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This contribution describes a Decision Tree intended to guide the selection of statistical models and data reduction procedures in
key comparisons (KCs). The Decision Tree addresses a specific need of the Inorganic Analysis Working Group (IAWG) of the
Consultative Committee (CC) for Amount of Substance, Metrology in Chemistry and Biology (CCQM), of the International Committee
for Weights and Measures (CIPM), and it is likely to address similar needs of other working groups and consultative committees.

Because the portfolio of KCs previously organized by the CCQM-IAWG affords a full range of opportunities to demonstrate the
capabilities of the Decision Tree, the majority of the illustrative examples of application of the Decision Tree are from this working
group. However, the Decision Tree is widely applicable in other areas of metrology, as illustrated in examples of application to
measurements of radionuclides and of the efficiency of a thermistor power sensor.

The Decision Tree is intended for use after choices will have been made about the measurement results that qualify for inclusion
in the calculation of the key comparison reference value (KCRV), and about the measurement results for which degrees of equivalence
should be produced. Both these choices should be based on substantive considerations, not on purely statistical criteria. However, the
Decision Tree does not require that the measurement results selected for either purpose be mutually consistent.

The Decision Tree should be used as a guide, not as the sole and autonomous determinant of the model that should be selected for
the measurement results obtained in a KC, or of the procedure that should be employed to reduce these results. The scientists running
the KCs ultimately have the freedom and responsibility to make the corresponding choices that they deem most appropriate and that
best fit the purpose of each KC.

The Decision Tree involves three statistical tests, and comprises five terminal leaves, which correspond to as many alternative
ways in which the KCRV, its associated uncertainty, and the degrees of equivalence (DoEs) may be computed.

This contribution does not purport to suggest that any of the KCRVs, associated uncertainties, or DoEs, presented in previously
approved final reports issued by working groups of the CCs should be modified. Neither do the alternative results question existing,
demonstrated calibration and measurement capabilities (CMCs), nor do they support any new CMCs.
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1. Introduction

Key comparisons (KCs) are a particular kind of interlaboratory study intended to characterize
quantitatively the degree of equivalence of national measurement standards. The participants in KCs are
national metrology institutes (NMIs), or their designates, of countries that are signatories of the arrangement
for the mutual recognition (MRA) of national measurement standards and of calibration and measurement
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certifcates issued by the NMIs. The MRA was drafted by the International Committee for Weights and 
Measures (CIPM) under the authority given to it in the Metre Convention [1]. 

In the context of this arrangement, the degree of equivalence (DoE) of measurement standards is taken 
to mean the degree to which these standards are consistent with reference values determined from the KCs 
and hence are consistent with one another. The DoE of a national measurement standard is expressed 
quantitatively in terms of its deviation from the key comparison reference value (KCRV) and the uncertainty 
of this deviation. 

The MRA does not specify how KCRVs should be computed or how their uncertainties should be 
evaluated. The MRA (in the 2003 revision of its Technical Supplement) explains that “the degree of 
equivalence of each national measurement standard is expressed quantitatively by two terms: its deviation 
from the key comparison reference value and the uncertainty of this deviation (at a 95 % level of 
confdence). The degree of equivalence between pairs of national measurement standards is expressed by the 
difference of their deviations from the reference value and the uncertainty of this difference (at a 95 % level 
of confdence)” [1, Sec. T.2]. 

The most common and simplest form of a KC organized by the Inorganic Analysis Working Group 
(IAWG) of the Consultative Committee for Amount of Substance, Metrology in Chemistry and Biology 
(CCQM), involves measurement and intercomparison of measurement results of the same measurand in 
different aliquots of the same material distributed to the participants, where the material has been selected to 
demonstrate specifc measurement capabilities, and its homogeneity and stability have been characterized in 
advance of the KC. 

The measurement capabilities to be demonstrated may inherently include methods of sample preparation 
and extraction of the element or compound of interest, ability to cope with challenges posed by the matrix 
containing the analyte, application of methods of analysis, delineation of credible, realistic uncertainty 
budgets, establishment of meaningful metrological traceability, and execution of the calculations necessary 
to produce an estimate of the measurand, and to characterize the associated uncertainty. 

The uncertainty associated with each measured value y, as evaluated and reported by each participant in 
the KC, may be expressed as an expanded uncertainty Up(y), with specifed coverage probability 0 < p < 1, 
with the understanding that the interval y ±Up(y) is believed to include the true value of the measurand with 
probability p. Alternatively, the uncertainty may be expressed as a (combined) standard uncertainty, uc(y), 
with the understanding that it represents the standard deviation of a probability distribution that describes 
the uncertainty surrounding the estimate of the measurand. 

The uncertainty (expanded or standard) may be expressed using an asymmetrical interval, a fully 
specifed probability distribution, or a sample drawn from the probability distribution that describes the 
uncertainty surrounding the KCRV or difference in the DoE. These alternatives have not seen much use in 
KCs, but have otherwise been used in measurement science [2–5] and in specifc scientifc disciplines [6]. 

Ideally, and according to Ref. [7, p. 14], each reported uncertainty (however it may be expressed), 
should be qualifed with the number of degrees of freedom that support it, in accordance with Annex G of 
the Guide to the Expression of Uncertainty in Measurement (GUM) [8]. This requirement notwithstanding, 
numbers of degrees of freedom often are not reported. However, when they are reported, the procedures 
specifed in the leaves of the Decision Tree described in Sec. 2 will take them into account. 

A cursory examination of fnal reports of KCs organized by the CCQM-IAWG reveals that KCRVs and 
DoEs have historically been computed in several different ways, and considerable time and effort have 
regularly been expended discussing and fnally selecting particular ways in which the KCRV and the DoEs 
have been computed. 

The CCQM-IAWG is not alone in this endeavor, for other CCs of the CIPM have faced the same 
challenges, and so have much larger communities concerned with similar comparisons, conducted for a wide 
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range of purposes. 
The largest such community, which is also the one that publishes the largest number of results from 

comparative studies per year, is the medical community [9] where, in contrast with KCs, different 
measurements are not planned in advance and performed in coordination, but only their results are blended a 
posteriori, typically after they will have been published independently of one another. For this reason, they 
are often described as “meta-analyses” [10]. 

The medical and other communities that seek to bolster confdence in research results by blending 
information from multiple studies face challenges similar to those that the CCs face [11–13], and similar 
quandaries [14]. Meta-analysis has made very important contributions to human health and public health 
policy [15–17]. 

Section 2 outlines the approach to the development of the Decision Tree, including a review of principles 
originally introduced in Ref. [18] that inform the models and procedures for data reduction implemented in 
the Decision Tree. Section 3 describes these models and procedures: adaptive weighted average, weighted 
median, and three Bayesian, hierarchical models responsive to different features of the measurement results. 
Section 4 provides examples of use, in the form of reanalyses of historical measurement results from 
selected comparisons organized by different CCs. Section 5 summarizes the lessons learned from the 
examples, and offers recommendations for the use of the Decision Tree in future KCs. 

2. Decision Tree and Guiding Principles

Figure 1 depicts the Decision Tree, which comprises four branching nodes (orange) and fve leaves
(blue). The leaves indicate different procedures for data reduction, each of which has an underlying 
statistical model. To use the Decision Tree one answers a question at each node, and follows the course 
corresponding to the answer (YES or NO), until one reaches a leaf. 

Fig. 1. The Decision Tree comprises four branching nodes (orange) and fve leaves (blue) that suggest different models 
for the measurement results and corresponding procedures for data reduction. A question needs to be answered at each 
node: if the answer is YES, then one follows the green branch (toward the left); if the answer is NO, then one follows 
the red branch (toward the right), until one reaches a leaf. 

The Decision Tree refects the current state of the statistical arts in modeling and data analysis for KCs 
and other interlaboratory studies and meta-analyses. It represents a compromise among rigor, simplicity, and 
practicability, offering a reasonable, general-purpose solution to the recurring problem of how to reduce the 
measurement results obtained in a KC, best to support the mutual recognition of national measurement 
standards and of calibration and measurement certifcates issued by national metrology institutes (NMIs) [1]. 
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The solutions offered by the Decision Tree express a subjective understanding of the principal issues 
facing the CCs as they set out to model and reduce data from KCs. These solutions are not unique because 
in most cases there will be alternative, similarly rigorous solutions that could be adopted. However, in 
addition to its simplicity and practicability, the Decision Tree is also consistent with the general principles 
for model selection and data reduction in interlaboratory studies enunciated by Koepke et al. [18], which we 
summarize and reformulate as follows, to make their intent clear in the present context: 

(P1) It is the prerogative and responsibility of the organizing CC or working group to select the 
measurement results that will determine the KCRV. However, DoEs will be computed for all 
participants regardless of whether or not their results are included in the calculation of the KCRV and 
associated uncertainty, unless they will have chosen to withdraw from the KC. The selection of some 
results for the computation of the KCRV, and the exclusion of others, should be based on substantive 
reasons that are documented in the KC fnal report. The mere fact that a measured value lies far from 
the bulk of the others alone is insuffcient reason to set it aside, even if a statistical test suggests that it 
is an “outlier.” 

(P2) No measured value should dominate the consensus value “automatically,” simply because the 
associated measurement uncertainty is much smaller than the uncertainties associated with the other 
measured values. 

To this end, procedures for data reduction should include some damping mechanism to limit the 
infuence that measured values with unusually small associated uncertainties will have upon the 
KCRV. This provision is consequential only when the measurement results are markedly mutually 
inconsistent: that is, when the measured values are signifcantly more dispersed than the reported 
uncertainties suggest that they should be. 

(P3) Measurement methods should be suffciently well characterized to warrant confdence in the belief 
that the measured values, taken as a group, are roughly centered at the true value of the measurand. 
Participating laboratories should have previously demonstrated suffcient competence based on 
satisfactory performance in previous KCs, pilot studies, or profciency tests. 

If all the measured values would tend to be too low or too high relative to the true value of the 
measurand, no statistical procedure that relies on the data alone will be able to detect this and 
“correct” the consensus estimate accordingly, but the DoEs may, even in such cases, still be 
comparable and informative. 

(P4) A model should be formulated that explicitly relates the measured values to the true value, µ , of the 
measurand, and that includes elements representing contributions from all recognized sources of 
uncertainty. Furthermore, the estimation of µ , and the evaluation of the associated uncertainty, should 
be consistent with the statistical model and with some principle of estimation whose general reliability 
is widely recognized. 

The calculation of the KCRV is contingent on such a model and on the choice of optimality criterion 
that the KCRV is intended to satisfy. Suppose that the model specifes that the measured values are 
equal to the measurand plus random, mutually independent, Gaussian measurement errors. This alone 
does not suffce to justify combining the measured values in a particular way (say, as weighted 
average of the measured values). An additional criterion is needed: for example, one that seeks to 
minimize the mean squared error of the KCRV, or one that requires a KCRV with minimal absolute 
error. Therefore, the choices that one needs to make to determine the KCRV should take into account 
the purpose that the KC is intended to serve. 
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The estimates of the parameters in the model, and derivative quantities — including the KCRV, 
associated uncertainty, and DoEs — ought to be smooth, slowly varying functions of the measurement 
results. This last requirement applies to individual models underlying the leaves of the Decision Tree, 
not necessarily to the Decision Tree as a whole. In particular, it speaks against procedures that involve 
outright rejection of some measurement results instead of a modulated, smooth down-weighting 
scheme. 

(P5) The statistical model underlying data reductions should be able to detect, evaluate, and propagate dark 
uncertainty [19], which manifests itself as dispersion of the measured values in excess of what the 
reported uncertainties suggest that it should be, and thereby accounts for mutual inconsistency of the 
measurement results. 

Failure to recognize and propagate dark uncertainty generally yields DoEs with uncertainties that are 
too small. Both the average and the median of the measured values, with or without the conventional 
weights (which are proportional to the reciprocal, squared reported uncertainties) ignore dark 
uncertainty, and thus tacitly assume that the results are mutually consistent. 

The GUM [8] stipulates that the uncertainty associated with a measured value should refect the 
contributions of all sources of uncertainty. This implies not only that the reported uncertainties should 
play a role in the calculation of the KCRV and of the DoEs, but also that the contribution from dark 
uncertainty should be recognized and propagated. 

Even though the uncertainties reported by KC participants may be imperfect, using them is still better 
than ignoring them. Most software implementations of procedures to reduce data from interlaboratory 
studies and meta-analyses require that the reported uncertainties be specifed or that suffcient data be 
provided from which the uncertainties of the measured values may be derived: for example, RevMan 
(https://revman.cochrane.org/ from Cochrane Reviews), and the metafor [20] and other, similar 
packages for the R environment for statistical computing and graphics [21]. 

(P6) Degrees of equivalence (differences between measured values and the consensus value, or between 
pairs of measured values, qualifed with evaluations of associated uncertainty) should be computed 
consistently with their primary goal of identifying participants with “unusual” results, in the sense that 
their measured values lie “beyond the range allowed by the model”, as suggested by Jones and 
Spiegelhalter [22] and elaborated by Koepke et al. [18, Sec. 6]. 

The NIST Consensus Builder [23], published by the National Institute of Standards and Technology 
(NIST), heeds this principle, which implies, in particular, that dark uncertainty is recognized when 
evaluating the uncertainties in the DoEs. This practice follows from the understanding that uncertainty 
evaluations should refect contributions from all sources of uncertainty that one is aware of: it does not 
matter whether such awareness derives from a bottom-up analysis of the measurement system 
employed by each participant in the KC, or results from a top-down evaluation done collectively, 
when the individual results (measured values and reported uncertainties) are put on the table and 
compared [24, Sec. 3f, p. 16]. 

3. Models and Methods

The Decision Tree involves three statistical tests and fve models and procedures for statistical data
reduction. The tests are of (1) mutual consistency (that is, homogeneity) of the measurement results, (2) 
symmetry of the measured values, and (3) Gaussian shape of the (standardized) measured values. The 
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models and corresponding procedures are for weighted averages, weighted medians, and three Bayesian, 
hierarchical, random effects models. 

The measurement results of a KC involving N participants may be summarized in N triplets, 
(x1,uc(x1),ν1), . . . , (xN , uc(xN),νN), each of which comprises a measured value x j, the associated standard 
uncertainty uc(x j), and the number of degrees of freedom ν j on which the standard uncertainty is based, for 
j = 1, . . . ,N. However, in many cases the {ν j} are not reported, even though the CIPM requires them [7, 
p. 14].

In general, only n 6 N of the measurement results are used to produce the KCRV and to evaluate its
associated uncertainty, but DoEs are computed for all N participants, except for any that may withdraw from 
the comparison. The number, n, of participants whose results contribute to the calculation of the KCRV, is 
infuential for two reasons: frst, because KCs are conducted not only for the beneft of the participants and 
to honor the obligations of the MRA, but also to learn lessons that should be relevant to a whole community 
of interested parties; and second, because the value of n impacts the reliability of the recommendation of the 
Decision Tree for how the measurement results should be reduced. For both these reasons, the larger the n, 
the more widely applicable and the more reliable the conclusions. 

Bender et al. [25, p. 389], who have considered the challenges facing the task of blending results from 
multiple, independent studies, for purposes of evidence synthesis, concluded that “no satisfactory universal 
method is currently available to perform meta-analyses in the case of very few studies.” Even though their 
focus was primarily evidence synthesis in the medical feld, the challenges are very much the same in 
interlaboratory studies, and KCs in particular, carried out in measurement science. By “very few” they seem 
to mean n smaller than 10. 

The limitations and requirements concerning n that are imposed by the three statistical tests governing 
traversals of the Decision Tree will be discussed in Sec. 3.1.1, Sec. 3.1.2, and Sec. 3.1.3. In general, the 
smaller the n, the lower the power of these tests: that is, the smaller the probability of detecting 
heterogeneity, or asymmetry, or non-Gaussian shape, when in fact they prevail. 

According to principle (P1) from Sec. 2, the selection of the measurement results for inclusion in the 
characterization of the KCRV should be based on substantive considerations, not on statistical criteria. In 
particular, (P1) rules out the concept of largest consistent subset proposed by Cox [26] as a basis for the 
aforementioned selection. 

The generic model for weighted averages and weighted medians is the so-called common mean model, 
which expresses each measured value as x j = µ + ε j, where µ denotes the true value of the measurand, and 
ε j denotes measurement error. 

The hierarchical models all are random effects models, which express each measured value as 

x j = µ + λ j + ε j, (1) 

where µ denotes the true value of the measurand, λ j denotes a participant’s effect (which may be positive or 
negative, according to whether the participant tends to produce high or low values), and ε j denotes 
measurement error specifc to participant j, for j = 1, . . . ,n. 

It is possible to distinguish the {λ j} from the {ε j} that appear in Eq. (1) because the reported 
uncertainties {uc(x j)} are also part of the data, not only the measured values. If the {x j} are more dispersed 
than the {uc(x j)} suggest that they should be, then the {λ j} cannot all be zero. 

The random effects {λ j} are modeled as a sample from a probability distribution with mean 0 and 
standard deviation τ that quantifes dark uncertainty. The specifc probability distribution chosen for the 
random effects depends on the model, as explained in Sec. 3.1. 

In all the models entertained by the Decision Tree, except for the model that leads to the weighted 
median as estimate of the KCRV, the measurement errors {ε j} are modeled as non-observable outcomes of 
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independent, Gaussian random variables, all assumed to have mean 0. Their standard deviations {σ j}
generally may differ from one another. Some of the {σ j} may be treated as being unknown, with the 
reported uncertainties {uc(x j)} serving as estimates of the corresponding {σ j}, while others may be treated 
as being known with full certainty, and hence σ j = uc(x j). The numbers of degrees of freedom, {ν j}, when 
they are reported, indicate which are which: a reported uncertainty whose ν j is fnite is taken as an estimate 
of the corresponding σ j; one whose ν j is practically infnite is regarded as being the actual value of σ j 

(however unrealistic this assumption may be). 

3.1 Statistical Tests 

Statistical tests may suggest incorrect decisions, and typically they provide insurance against such 
eventuality by admiting the possibility of error and by controlling the probabilities of error [27]. For 
example, the test associated with the root of the Decision Tree may erroneously conclude that the results are 
heterogenous when in fact they are mutually consistent, or it may fail to diagnose the presence of dark 
uncertainty. The probability of the former (Type I error) is called the size of the test. The complementary 
probability of the latter (that is, the probability of detecting dark uncertainty when it is present) is called the 
power of the test. Similarly for the other tests. 

Consistently with the conventional approach to statistical tests of hypotheses [28], the three tests that 
determine how the Decision Tree is traversed are constructed to “protect” the hypotheses of mutual 
consistency, symmetry, and Gaussian shape against erroneously concluding them to be otherwise: this is 
accomplished by specifying suitably small probabilities for their Type I errors. Typical choices for the sizes 
of these tests are 1 % or 5 %, but it behooves the scientists responsible for the comparison to choose a size 
refecting a level of risk (in reaching the wrong conclusion) they are prepared to entertain. For Cochran’s Q 
test, we recommend a generous allowance for the probability of Type I error, say 10 %, because it is more 
consequential to fail to detect dark uncertainty when it exists, than to conclude erroneously that τ = 0. 

Traversing the Decision Tree involves carrying out two or three statistical tests. Therefore, if the level of 
overall risk deemed acceptable for the selection of a leaf is 0 < α < 1, then the sizes of the individual tests 
should be adjusted for the actual multiplicity of testing, because the more often one tests the greater the 
chances of at least one individual test reaching a wrong conclusion. 

On the one hand, the most conservative adjustment, which is also valid under the most general 
conditions, is to “size” the individual tests so that the probabilities of Type I error add up to α — the 
so-called Bonferroni Correction [29]. On the other hand, the tests are applied sequentially in this case, 
which may compromise the adequacy of this correction. 

The recommended approach, in any case, is to focus on the p-values of the tests, and decide whether 
they are commensurate with acceptable risks of erroneous conclusions, or not. The p-value is the probability 
of observing a value of the test criterion at least as deviant from the expected value as was observed, when 
the hypothesis under test is true, and such deviation occurs by chance alone, owing to the vagaries of 
sampling. 

When discussing the individual tests below, we will point out that statistical signifcance need not be the 
sole determinant of a conclusion (YES or NO) and the corresponding path to take at each node of the 
Decision Tree. Criteria of substantive signifcance may legitimately weigh upon the decision as well. None 
of these tests affords 100 % probability of detecting signifcant heterogeneity, or asymmetry, or 
non-Gaussian shape for the relevant probability distributions when these conditions prevail. In fact, their 
power generally will be quite low when the number of participants in the KC is small. 

The power of a statistical test of a specifed hypothesis is the probability of rejecting this hypothesis 
when it is false. Since the size and power of a statistical test typically move in opposite directions, the desire 
to achieve greater power usually comes at the price of increasing the probability of incorrectly rejecting the 
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hypothesis that the test “protects” by design. 
For example, suppose that there is either precedent or substantive reason to suspect that the measured 

values may be arranged asymmetrically around the true value of the measurand. In this case one may choose 
to reject the hypothesis of symmetry for a larger Type I error than when there are no grounds for such 
suspicion, thus accommodating the expected conclusion. 

Skewness in the distribution of the participants’ effects (in random effects models of the kind introduced 
in Eq. (1) and discussed in Sec. 3.2.3, Sec. 3.2.4, and Sec. 3.2.5) may be a consequence of incomplete 
extraction of the measurand from its matrix, for example of a heavy metal that is complexed in organic 
tissue, say arsenic in arsenobetaine [30, 31]. 

3.1.1 Mutual Consistency 

Cochran’s chi-squared, or Q test, is widely used to detect mutually inconsistent measurement results 
[32]. Figure 2 lists R code illustrating how this and the other tests involved in traversing the Decision Tree 
may be applied. 

Cochran’s Q test generally has low power to detect heterogeneity (that is, mutual inconsistency) of the 
measurement results [37–39], especially for small n. Any n < 10 should be regarded as “small” in this 
context. However, power depends also on the magnitude of the dark uncertainty, τ , that is invoked to 
“explain” the heterogeneity: power typically increases with increasing τ . 

An abundance of caution has motivated us to build a provision into the Decision Tree that lessens the 
impact of wrong choices regarding homogeneity: even when Cochran’s Q test does not detect signifcant 
heterogeneity and the measured values satisfy the Gaussian assumption, the Decision Tree suggests that an 
adaptive weighted average be used instead of the conventional weighted average. This adaptive weighted 
average is the DerSimonian-Laird procedure [18, 40], as will be explained below. 

It should be noted that the reason to accept or reject the hypothesis of homogeneity need not be only the 
p-value of the test. It is reasonable also to take into account the actual, relative magnitude of τ , the
contribution from dark uncertainty. If τ (which is a standard deviation) is only a small fraction (say, less
than 10 %) of the reported standard uncertainties, then it may not be substantively consequential, even if it is
statistically signifcant.

An estimate of the relative magnitude of τ , as well as an assessment of its statistical signifcance, will 
help the user decide whether there appears to be suffcient, substantively meaningful heterogeneity, and to 
proceed accordingly. Also, a coverage interval for τ is generally more useful and informative than a 
statistical test. R function confint defned in package metafor can and should be used routinely to 
produce confdence intervals for τ , as illustrated in Fig. 2. This function implements the Q-profle likelihood 
method described in Refs. [41] and [42]. 

In many cases, the left endpoint of a confdence interval for τ will be 0, suggesting that there is no 
signifcant contribution from dark uncertainty. However, if the right endpoint amounts to a large proportion 
of both the measured values and of the reported standard uncertainties, then such suggestion, even when it is 
reinforced by a large p-value from Cochran’s Q test, should not be accepted automatically. 

A Bayesian procedure, for example the Hierarchical Gauss + Gauss procedure mentioned in Sec. 3.2.3, 
can provide a large sample from the posterior distribution of τ , from which an estimate of the corresponding 
probability density can be built, for example using R function density. If this density appears to have a 
single mode (value where it reaches a maximum) clearly away from zero, then this is persuasive evidence in 
favor of there being heterogeneity. However, carrying out such inquiry involves some offine processing of 
the optional output of the NIST Consensus Builder, for example. 

Alternatively, especially when the number of participants is small and the measured values seem to 
conform with the assumption of Gaussian shape, one may still opt for the hierarchical model with Gaussian 
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random effects and Gaussian errors (third leaf from the left in Fig. 1), instead of the adaptive weighted 
average, because the hierarchical model propagates dark uncertainty reliably, both to the KCRV and to the 
DoEs. 

Even though one should strive not to fail to detect signifcant heterogeneity, it should also be noted that 
when many laboratories are involved, Cochran’s Q test may detect statistically signifcant heterogeneity that 
is substantively irrelevant [43]. Hoaglin [39] reviewed these and other shortcomings of the test. 

## Measurement results 
z = read.table(header=TRUE, as.is=TRUE, text=" 
lab w U k 
KRISS 226.26 1.94 2.45 
LGC 224.6 3.0 2 
LNE 230.42 5.97 2 
PTB 227.0 1.4 2 
UME 209.8 7.6 2") 

## Standard uncertainties 
z$uw = z$U/z$k 

## Data selection: excluding UME 
index = (z$lab != "UME") 
w = z$w[index] 
uw = z$uw[index] 

## Cochran's Q test of mutual consistency 
## and confidence interval for tau 
library(metafor) 
w.rma = rma(yi=w, sei=uw, method="DL"); w.rma
confint(w.rma, fixed=FALSE, random=TRUE) 

## Symmetry 
library(symmetry) 
symmetry_test(w, stat="MGG", bootstrap=TRUE, B=10000) 

## Gaussian Shape 
library(nortest) 
ad.test((w-median(w))/uw) 
shapiro.test((w-median(w))/uw) 

Fig. 2. R code implementing Cochran’s Q test, the symmetry test described by Miao et al. [33], and both the 
Anderson-Darling [34] and Shapiro-Wilk [35] tests of Gaussian shape, as applied to the measurement results from 
CCQM-K45 (mass fraction of tin in tomato paste) [36]. UME’s measurement result was excluded from the calculation 
of the KCRV because their analytical procedure deviated signifcantly from the protocol of the KC. On the one hand, the 
test statistic for Cochran’s test was Q = 3.92 which, when compared with the chi-squared reference distribution with 
three degrees of freedom, yielded a p-value of 0.27, thus not rejecting the hypothesis of mutual consistency. On the 
other hand, the confdence interval for τ produced by confint ranges from 0.0 mg/kg to 8.8 mg/kg, and this upper 
endpoint amounts to 4 % of the KCRV and is eight times larger than the median of the reported standard uncertainties. 
The symmetry test yielded a p-value of 0.13, thus not rejecting the hypothesis that the measured values originate from a 
symmetric distribution. Both tests of Gaussian shape were applied to the roughly standardized measured values. The 
Anderson-Darling test ended with an error because its implementation cannot handle samples with fewer than eight 
observations. The Shapiro-Wilk test produced a p-value of 0.92, thus not rejecting the hypothesis of Gaussian shape. 
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3.1.2 Symmetry 

The test proposed by Miao et al. [33] is used to test symmetry about an unknown median. It is applied 
to the measured values as exemplifed in Fig. 2, and it employs the bootstrap method to build the reference 
distribution that is then used to calculate the p-value, as suggested by Zheng and Gastwirth [44]. 

The symmetry test comes in two versions depending on how the p-value of the test is computed. In the 
original formulation of the test [33], the computation of the p-value involves a large-sample (that is, large n) 
approximation. The subsequent, modifed version of the test, as developed in Ref. [44], involves bootstrap 
resampling [45] from a symmetrized version of the probability distribution of the data, and the reliability of 
such symmetrization depends on n. 

The smallest sample size that Ref. [44] used in simulations to study the test’s performance was n = 30. 
This may be taken as a hint that n < 30 should be considered small from the viewpoint of testing the 
hypothesis of symmetry, hence that the choices the Decision Tree recommends based on considerations of 
symmetry must be taken with a grain of salt. 

3.1.3 Gaussian Shape 

Both the Anderson-Darling [34] and Shapiro-Wilk [35] tests of Gaussian shape may reasonably be 
employed. The tests should be applied to the “roughly” standardized measured values: the differences 
between the measured values and their median, divided by the reported standard uncertainties. 

The R implementation of the Anderson-Darling test, in function ad.test defned in package nortest 
[46], requires at least eight measured values to be available, while R function shapiro.test requires only 
three or more. However, these are the minimum sample sizes that render the tests practicable, yet they offer 
no assurances as to their power. For example, Razali and Wah [47] concluded that, in some cases and for 
n = 10, the power of these tests can be as low as 9 %, and will certainly be lower still for n < 10. 

3.2 Statistical Models and Data Reductions 

This subsection reviews the statistical models, and corresponding data reductions, for each leaf of the 
Decision Tree. Implementations of the Adaptive Weighted Average (described in Sec. 3.2.1), of the 
Hierarchical Gauss + Gauss model (described in Sec. 3.2.3), and of the Hierarchical Laplace + Gauss 
model (described in Sec. 3.2.4), are already available in the NIST Consensus Builder. Figures 16 and 17, 
discussed in the Appendix (Sec. 6), provide computer codes that implement the Hierarchical Skew Student 
+ Gauss model.

3.2.1 Adaptive Weighted Average 

The weighted average, with weights proportional to {1/σ2 
j }, is the optimal KCRV when the

measurement results satisfy the common mean model, x j = µ + ε j, where µ denotes the true value of the 
measurand, and the {ε j} are like outcomes of independent, Gaussian random variables with mean 0 and 
standard deviations {σ j}. 

If one is prepared confdently to take σ j = uc(x j), then R function rma, with argument method="FE", 
defned in package metafor [20], provides the KCRV and its associated uncertainty. Otherwise, an 
alternative approach is required that involves treating the reported uncertainties (and possibly their numbers 
of degrees of freedom) as data, alongside the measured values. In either case, the DoEs require a custom 
treatment, properly to take the correlations into account that prevail between the measured values and the 
KCRV. 
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Considering the limitations of Cochran’s Q test of mutual consistency, the Decision Tree suggests that 
the adaptive weighted average from the DerSimonian-Laird procedure [40] should be used in this case, 
instead of the conventional weighted average. The DerSimonian-Laird procedure includes the common 
weighted average as a special case, which it uses when it estimates the dark uncertainty τ to be 0. 

The version of the DerSimonian-Laird procedure implemented in the NIST Consensus Builder is fully 
described in Ref. [18, Sec. 5.2]. This version produces the KCRV, the associated uncertainty, and the DoEs, 
taking into account the effective number of degrees of freedom on which the estimate of the dark uncertainty 
τ is based. 

3.2.2 Weighted Median 

The weighted median, with weights proportional to {1/σ2 
j }, is the optimal KCRV when the

measurement results satisfy the common mean model, x j = µ + ε j, where µ denotes the true value of the 
measurand, and the {ε j} are like outcomes of independent, Laplace random variables with mean 0 and 
standard deviations {σ j}. 

The Laplace distribution, whose tails are heavier than the tails of the Gaussian distribution, 
accommodates measured values that deviate appreciably from the bulk of the others, yet they are deemed 
legitimate and are not excluded from contributing to the KCRV. This modeling device automatically 
dampens the infuence that such extreme values have upon the KCRV and upon the uncertainty surrounding 
the KCRV and the DoEs. 

R function weighted.median defned in package spatstat [48] serves to compute the weighted 
median with specifed weights. Depending on the number of participants, the uncertainty associated with the 
KCRV, and the uncertainty component of the DoEs, are computed using either the nonparametric or the 
parametric version of the statistical bootstrap [45]. 

3.2.3 Hierarchical Gauss + Gauss 

The model corresponding to this leaf in the Decision Tree is the random effects model of Eq. (1), where 
the participants’ effects, {λ j}, are assumed to be a sample from a Gaussian distribution with mean 0 and 
standard deviation τ , and the measurement errors {ε j} are assumed to satisfy the same assumptions as for 
the model underlying the weighted average. 

Koepke et al. [18, Sec. 5.3, Sec. 6.2] described the model in detail, and the corresponding calculation of 
the DoEs. The procedure is implemented in the NIST Consensus Builder. 

3.2.4 Hierarchical Laplace + Gauss 

The difference between this model and the Hierarchical Gauss + Gauss model described above 
concerns the {λ j}, which here are assumed to be a sample from a Laplace distribution with mean 0 and 
standard deviation τ , for reasons similar to those that motivate the use of the Laplace distribution in relation 
with the weighted median [49, Sec. 5.1.5]. The corresponding procedure is implemented in the NIST 
Consensus Builder. Rukhin and Possolo [50] propose a similar model, except that the participants’ specifc 
measurement errors, {ε j} in Eq. (1), are assumed to have Laplace, rather than Gaussian distributions. 

3.2.5 Hierarchical Skew Student + Gauss 

The Hierarchical Skew Student + Gauss model describes the measured values according to Eq. (1) 
assuming that the participants’ effects, {λ j}, are a sample from a skew-t distribution [51], as introduced by 
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Koepke and Possolo [52] in the context of interlaboratory studies and meta-analysis. The Appendix (Sec. 6) 
provides details about this model and presents stand-alone Stan and R computer codes that implement it. 

The Hierarchical Skew Student + Gauss model, which is used for the results of the KC discussed in 
Sec. 4.5, has adaptive tail-heaviness controlled by a non-negative parameter ν (number of degrees of 
freedom), and also adaptive asymmetry quantifed by a real-valued, skewness parameter α (with α > 0 
indicating skewness to the right). Thus, the Hierarchical Skew Student + Gauss model accommodates sets 
of measurement results that arrange themselves asymmetrically relative to the consensus value, and that may 
possibly include measured values that deviate considerably from the bulk of the others, yet are deemed 
legitimate and are not excluded from contributing to the KCRV. 

4. Examples

The frst fve examples are from past KCs organized by the CCQM-IAWG, and serve to demonstrate the
fve leaves of the Decision Tree. The other examples, involving measurements of radionuclides and of 
microwave power, serve to show the wide applicability of the Decision Tree as a guide to model selection. 
The acronyms and initialisms used in these examples, to denote either participants in KCs or individual 
studies in interlaboratory studies, are defned in the published fnal reports or referenced articles. 

Section 4.1 illustrates the selection and results corresponding to the adaptive weighted average as 
applied to the estimation of the KCRV for the mass fraction of tin in tomato paste in CCQM-K45. 

Section 4.2 uses measurement results for the mass fraction of zinc in bovine liver, from CCQM-K145, 
for which the Decision Tree recommends the weighted median. 

Section 4.3 employs to the Hierarchical Gauss + Gauss procedure to reduce the measurement results 
for the mass fraction of nickel in bovine liver, also from CCQM-K145. 

Section 4.4 addresses a KC with apparently outlying yet substantively acceptable measurement results 
for the mass fraction of lead in lead-free solder, from CCQM-K88, for which the Hierarchical Laplace + 
Gauss model seems to be the best among those considered in the Decision Tree. 

Section 4.5 offers an instance of application of the Hierarchical Skew Student + Gauss procedure to 
reduce measurement results for the mass fraction of lead in wine, from CCQM-K30.1. 

Section 4.6 suggests that the Decision Tree is a fexible, general purpose replacement even for ad hoc 
procedures such as the power-moderated weighted mean proposed by Pommé and Keightley [56], which has 
recently been adopted by Section II (Measurement of radionuclides) of the Consultative Committee for 
Ionizing Radiation (CCRI), or the procedure that Ref. [57] proposed for dealing with discrepant data. 

Finally, Sec. 4.7 briefy reviews the recommendation of the Decision Tree for a particular set of 
measurement results from CCEM.RF-K25.W, two of which the Consultative Committee for Electricity and 
Magnetism (CCEM) chose to set aside because they were “statistical outliers.” 

In all cases, the goal is not to offer an alternative KCRV, associated uncertainty, or DoEs, but to illustrate 
how the Decision Tree may be used to arrive at a reasonable candidate solution for how to reduce the data 
from a KC. 

4.1 CCQM-K45 Tin in Tomato Paste 

The fnal report of CCQM-K45 [36] explains that UME deviated signifcantly from the protocol, and for 
this reason their result was excluded from the calculation of the KCRV. The KCRV was the simple average 
of the values measured by the other four participants, 227.1 mg/kg, and the associated standard uncertainty 
was 1.2 mg/kg. For this illustration, we will set UME’s result aside. 

The fnal report evaluated the uncertainty associated with the KCRV as the sample standard deviation of 
the measured values divided by the square root of 4, which is the GUM’s Type A evaluation of uncertainty 
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for the simple average of replicated observations made under conditions of repeatability. The reported 
uncertainties were disregarded both in the calculation of the KCRV and in the evaluation of the associated 
uncertainty. 

The fnal report appears to recognize implicitly that a weighted average might have been preferable (the 
largest reported uncertainty was 4.3 times larger than the smallest reported uncertainty), but it points out that 
(1) “KRISS used a coverage factor equal to 2.45, which indicates only 6 degrees of freedom. As a result, the
weighted mean is not considered the best estimate of the KCRV, as all results do not have suffcient degrees
of freedom,” and then it adds that (2) “as only 4 values can be used to calculate the KCRV, the median is also
not considered the best estimate of the KCRV” [36, p. 5].

Table 1 lists the mass fraction of tin in tomato paste for CCQM-K45, the associated expanded 
uncertainties reported by the participants, and the corresponding coverage factors. The fact that KRISS did 
use a coverage factor other than two is no obstacle for the procedures described in the Decision Tree because 
they can handle fnite numbers of degrees of freedom. KRISS’s coverage factor corresponds to six effective 
degrees of freedom. 

Table 1. CCQM-K45, Mass Fraction of Tin in Tomato Paste: measurement results and coverage factors for the 
expanded uncertainties for 95 % coverage. The acronyms and initialisms listed under LAB are defned in Ref. [36]. 

LAB w / mg/kg U(w) / mg/kg k 

KRISS 226.26 1.94 2.45 
LGC 224.6 3.0 2 
LNE 230.42 5.97 2 
PTB 227.0 1.4 2 
UME 209.8 7.6 2 

As illustrated in Fig. 2, and stated in its caption, Cochran’s Q test, the symmetry test, and the test of 
Gaussian shape, did not reject the corresponding hypotheses under test. In these circumstances, the Decision 
Tree recommends the adaptive weighted average for the KCRV, which turned out to be 226.5 mg/kg. 

Even though Cochran’s test yielded a p-value of 0.27, the DerSimonian-Laird estimate of τ , 
0.601 mg/kg, is not zero. Thus, τ = 0.601mg/kg will be used to modulate the weights of the weighted 
average as described in Ref. [18] and implemented in the NIST Consensus Builder. 

The standard uncertainty associated with the KCRV of 0.705 mg/kg, evaluated using the parametric 
statistical bootstrap, recognizes the six degrees of freedom supporting KRISS’s reported uncertainty. This√ 
evaluation is larger than the “internal” evaluation, which uses the formula 1/ ∑

n
j=1(1/uc(w j)) (with n = 4 

because UME’s result was not included in the calculation of the KCRV), and yields 0.5 mg/kg. 
Figure 3 depicts and compares the results for the KCRV, as per the fnal report, and their counterparts 

from the Decision Tree. The expanded uncertainty components of the DoEs were evaluated using the 
parametric bootstrap and recognize the small number of degrees of freedom supporting the standard 
uncertainty reported by KRISS. Figure 4 depicts the two versions of the DoEs. 
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Fig. 3. Measurement results from CCQM-K45 that were used to determine the KCRV and evaluate the associated 
uncertainty. The acronyms and initialisms designating the participants are defned in Ref. [36]. The red diamonds 
represent the measured values, and the vertical, thick blue line segments represent ±1 standard uncertainty intervals 
around the measured values. The minute, thin extensions of these vertical line segments refect the contribution from 
dark uncertainty. The horizontal, dark green line indicates the KCRV produced by the approach recommended by the 
Decision Tree and the pale green band depicts the associated standard uncertainty. The horizontal, brown line and khaki 
band indicate the results from the fnal report. The two versions of the KCRV are not signifcantly different, but the 
KCRV recommended by the Decision Tree has appreciably smaller uncertainty than its counterpart from the fnal report. 
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Fig. 4. DoEs for the participants in CCQM-K45, excluding UME. The acronyms and initialisms designating the 
participants are defned in Ref. [36]. 

4.2 CCQM-K145 Zinc in Bovine Liver 

The fnal report of CCQM-K145 [58], regarding the mass fraction of zinc, set aside results from INRAP, 
UNIIM, KEBS, INRIM, and EXHM for the reasons explained in the fnal report. The result from VNIIFTRI 
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was also set aside without an explicit explanation, but presumably owing to this participant having used a 
commercial reference material as calibrant for the determination of the mass fraction of zinc [58, Table 5]. 
Table 2 lists the measurement results and indicates those that the fnal report included in the calculation of 
the KCRV. 

The fnal report uses the median as KCRV. However, use of the median rendered the preliminary data 
selection exercise pointless, whereby “suspected extreme results” were investigated and set aside, because 
the median of all the measured values is identical to the median of the selected values, 456.2 mg/kg. This is 
no coincidence: the median is resistant to up to 50 % of the measured values being “extreme results.” The 
associated uncertainty likely will vary depending on which results are set aside. 

Table 2. CCQM-K145, Mass Fraction of Zinc in Bovine Liver: measurement results, coverage factors for the expanded 
uncertainties for 95 % coverage, and whether they were included or not in the calculation of the KCRV. The acronyms 
and initialisms listed under LAB are defned in Ref. [58]. 

LAB w u(w) U(w) k KCRV 

/ mg/kg 

EXHM 420.6 11.5 23.0 2 NO 

INRAP 429.71 9.48 18.96 2 NO 

UNIIM 436 9 18 2 NO 

LATU 453 5.6 11 2 YES 

INACAL 453.1 8.8 17.6 2 YES 

GLHK 453.6 7.7 15.4 2 YES 

NMIA 454.1 4.2 8.6 2.04 YES 

NIM 454.5 5.5 11 2 YES 

KRISS 454.5 6.7 13.2 1.96 YES 

LGC 454.5 3.9 7.8 2 YES 

NMISA 454.5 6.1 12.2 2 YES 

JSI 455 14 28 2 YES 

NIST 456.2 2.0 4.0 2.04 YES 

UME 457 4 7 2 YES 

HSA 459 7.1 14 2 YES 

PTB 459.4 1.7 3.4 2.03 YES 

RISE 460.5 3.2 6.3 2 YES 

SYKE 460.9 11.5 23.0 2 YES 

INMC 461 6.5 13 2 YES 

NRC 462 5 10 2 YES 

NIMT 462 13.2 27 2 YES 

NMIJ 462 3 6 2 YES 

KEBS 474.22 16.46 38.92 2.36 NO 

INRIM 491.7 10.0 20.1 2 NO 

VNIIFTRI 524 16 32 2 NO 

The main issues with the data reduction in the fnal report are these: 

• The median ignores the reported uncertainties, which are an integral part of the measurement results.

• Equation (3) in the fnal report, which was used to evaluate the standard uncertainty for the median, in
fact assumes that the measured values are a sample from a Gaussian distribution. In this case, Eq. (3)
produces a signifcant undervaluation of the uncertainty for the KCRV.
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• The calculation of expanded uncertainties for the DoEs using Eq. (5) of the fnal report is incorrect for
two reasons: (1) it ignores correlations between the KCRV and the measured values; and (2) the
evaluation of u(KCRV) uses a formula that assumes that the data are a sample from a Gaussian
distribution, and even then only approximately when the number of participants is large.

Figure 5 depicts the selected measured values (red diamonds) and the ±1 standard uncertainty intervals 
around the measured values (blue segments). Both the Shapiro-Wilk and Anderson-Darling tests reject the 
hypothesis that the measured values are a sample from a Gaussian distribution (with p-values less than, even 
if close to 1 %), which invalidates the evaluation of standard uncertainty for the KCRV in the fnal report. 
The measurement results are mutually consistent as judged by Cochran’s (chi-squared) Q test (p-value of 
0.96). 
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Fig. 5. Selected measurement results for the mass fraction of zinc in CCQM-K145 that contributed to the calculation of 
the KCRV. The acronyms and initialisms designating the participants are defned in Ref. [58]. The red diamonds 
represent the measured values, and the vertical, blue line segments represent ±1 standard uncertainty intervals around 
the measured values. Even though the median and the weighted median are not signifcantly different, the fnal report 
likely under-evaluated the uncertainty associated with the median. 

The Decision Tree, considering that the results appear to be homogeneous but not Gaussian, suggests the 
weighted median for the KCRV, with weights inversely proportional to the squared reported uncertainties. 
Applying R function weighted.median, defned in package spatstat (version 1.64-1) [48], yields 
457.55 mg/kg (bias-corrected by the statistical bootstrap). 

The standard uncertainty of the weighted median, 1.65 mg/kg, which was computed using the 
nonparametric statistical bootstrap [45], is approximately 1.4 times larger than the corresponding value in 
Table 20 of the fnal report. The Monte Carlo method was used to produce evaluations of the DoEs, 
{D j ±U95%(D j)}, which are depicted in Fig. 6. 
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Fig. 6. DoEs for the participants in CCQM-K145 whose measurement results were included in the calculation of the 
KCRV for the mass fraction of zinc. The acronyms and initialisms designating the participants are defned in Ref. [58]. 

4.3 CCQM-K145 Nickel in Bovine Liver 

In the fnal report of CCQM-K145 [58], the KCRV is the median of a selected subset of the measured 
values, with standard uncertainty computed according to Eq. (3) of the fnal report. The DoEs were 
computed according to Equations (4)-(5). The results from UNIIM, NMISA, NIMT, KEBS, and EXHM 
were set aside for the reasons explained in the fnal report. The result from VNIIFTRI was also set aside 
likely for the same reason mentioned in Sec. 4.2. Table 3 lists the measurement results and indicates those 
that were included in the calculation of the KCRV, as per the fnal report. 

The main issues with the original analysis presented in the Final Report are the following: 

• The median ignores the reported uncertainties, which are an integral part of the measurement results.
The median also is blind to dark uncertainty [19], the excess dispersion of the measurement results
that renders them mutually inconsistent.

• The calculation of expanded uncertainties for the DoEs using Eq. (5) of the fnal report is incorrect for
two reasons: (1) it ignores correlations between the KCRV and the measured values; and (2) the
evaluation of u(KCRV) uses a formula that assumes that the data are a sample from a Gaussian
distribution, and even then only approximately when the number of participants is large.

The measurement results are not mutually consistent as judged by Cochran’s (chi-squared) Q test 
(p-value 0.0007). The measured values may reasonably be regarded as a sample from a symmetrical 
distribution according to the statistical test recommended in Ref. [33], which is implemented in R package 
symmetry [59]. 

Additionally, the roughly standardized measured values, {(x j − m)/u(x j)}, where m is the median of the 
measured values, may be reasonably regarded as a sample from a Gaussian distribution, according to both 
the Shapiro-Wilk and Anderson-Darling tests. Therefore the recommended analysis is the Hierarchical 
Gauss + Gauss procedure, which is already implemented in the NIST Consensus Builder. 

The resulting KCRV, labeled Hierarchical Gauss + Gauss in Fig. 7, is 2.042 mg/kg. The associated 
standard uncertainty equals 0.017 mg/kg, which is larger than the corresponding value in Table 20 of the 
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fnal report. The DoEs depicted in Fig. 8 also were produced by the NIST Consensus Builder. Note that 
these DoEs suggest different conclusions for LGC and UME than the fnal report. 

Table 3. CCQM-K145, Mass Fraction of Nickel in Bovine Liver: measurement results, coverage factors for the 
expanded uncertainties for 95 % coverage, and whether they were included or not in the calculation of the KCRV. The 
acronyms and initialisms listed under LAB are defned in Ref. [58]. 

LAB w u(w) U(w) k KCRV 

/ mg/kg 

UNIIM 0.147 0.016 0.033 2 NO 

NMISA 0.902 0.038 0.076 2 NO 

EXHM 1.017 0.05 0.100 2 NO 

NIMT 1.65 0.06 0.13 2 NO 

JSI 1.93 0.11 0.22 2 YES 

INMC 1.94 0.06387 0.13 2 YES 

GLHK 1.942 0.092 0.183 2 YES 

LNE 1.958 0.075 0.15 2 YES 

VNIIFTRI 1.96 0.09 0.18 2 NO 

NIST 1.984 0.020 0.047 2.31 YES 

KRISS 1.993 0.033 0.067 2.06 YES 

INACAL 2.01 0.06 0.13 2 YES 

NMIA 2.02 0.05 0.1 2.02 YES 

NIM 2.022 0.023 0.046 2 YES 

NMIJ 2.05 0.02 0.04 2 YES 

RISE 2.055 0.052 0.10 2 YES 

NRC 2.07 0.05 0.10 2 YES 

PTB 2.077 0.035 0.071 2.00 YES 

LATU 2.08 0.059 0.12 2 YES 

LGC 2.131 0.042 0.084 2 YES 

UME 2.15 0.03 0.06 2 YES 

HSA 2.18 0.08 0.15 2 YES 

KEBS 4.63 0.94 2.22 2.36 NO 
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Fig. 7. Selected measured values (red diamonds), and the ±1 standard uncertainty intervals around the measured values 
(blue segments), for the mass fraction of nickel in CCQM-K145. The acronyms and initialisms designating the 
participants are defned in Ref. [58]. Median (brown horizontal line) and associated standard uncertainty (half the height 
of the khaki band) are shown according to the fnal report, and their counterparts for the KCRV (labeled Hierarchical 
Gauss + Gauss) recommended by the Decision Tree. 
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Fig. 8. DoEs corresponding to the determinations of the mass fraction of nickel in CCQM-K145. The acronyms and 
initialisms designating the participants are defned in Ref. [58]. Note the difference in the results for LGC and UME 
corresponding to the Hierarchical Gauss + Gauss procedure and to the fnal report. 

4.4 CCQM-K88 Lead in Lead-Free Solder 

Even though participants in CCQM-K88 [60] were allowed to use any suitable method of measurement, 
at its meeting of April 11-12, 2011, the CCQM-IAWG decided that the KCRV would be estimated based on 
the measurement results obtained using either inductively coupled plasma mass spectrometry (ID-ICP-MS) 
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(four participants) or isotope dilution thermal ionization mass spectrometry (ID-TIMS) (one participant), 
therefore excluding the results from the other fve participants. The reported KCRV was the median, 
197.2 mg/kg, with expanded uncertainty of 0.9 mg/kg for 95 % coverage. 

The same as in the other examples in this collection, the purpose of this review is not to suggest an 
alternative to the KCRV that was adopted originally, or to its uncertainty or to the DoEs, but instead to use 
the measurement results from all participants, listed in Table 4, to illustrate how a set of results, including 
some that deviate markedly from the bulk of the others, may be reduced when there is no reason to set any 
of them aside. 

Table 4. CCQM-K88, Mass Fraction of Lead in Lead-Free Solder: measurement results, and whether the fnal report 
included them or not in the calculation of the KCRV. The acronyms and initialisms listed under LAB are defned in 
Ref. [60]. 

LAB w / mg/kg U(w) / mg/kg k KCRV 

INMETRO 179 4 2 NO 

VNIIM 194.2 10 2 NO 

NIM 195.8 2.6 2 YES 

NMIJ 196.7 1.52 2 YES 

KRISS 197.2 2 2 YES 

PTB 197.9 1.9 2 YES 

BAM 198.29 0.5 2 YES 

INTI 199 4 2 NO 

NIST 199.43 0.7 2 NO 

NRC 202.4 18.6 2 NO 

All 10 measurement results were selected for this exercise. The measurement results are mutually 
inconsistent as judged by Cochran’s Q (chi-squared) test, which yields a p-value of less than 0.0001. 
Furthermore, the dispersion of the measured values, as gauged using R function mad, is about two times 
larger than the median of the reported standard uncertainties. 

The Anderson-Darling test of Gaussian shape, applied to the roughly standardized measured values, 
with a p-value of 0.03, suggests that the Gaussian model is not appropriate for these data. But since the test 
of symmetry proposed in Ref. [33] yields a p-value of 0.22, the Decision Tree recommends the Hierarchical 
Laplace + Gauss model, with results depicted in Fig. 9. The DoEs, {D j ±U95%(D j)}, were computed as 
explained in [18, Sec. 6.2]. The DoEs depicted in dark orange (leftmost of each pair) in Fig. 10 are from the 
present study, while the DoEs depicted in brown (rightmost in each pair) are from the fnal report. The 
appreciable difference between the corresponding expanded uncertainties is attributable to the dark 
uncertainty, which is substantial (τb = 4.3mg/kg) when none of the measurement results is set aside. This is 
refected in the DoEs corresponding to the Hierarchical Laplace + Gauss model. 
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Fig. 9. Measurement results for the mass fraction of lead in CCQM-K88, and comparison of the KCRV adopted in the 
fnal report (horizontal brown line with associated standard uncertainty represented by the khaki band), which included 
only the values corresponding to the participants labeled in brown, with the KCRV recommended by the Decision Tree 
(horizontal, dark green line), 197.4 mg/kg. The pale green band depicts the associated standard uncertainty, 1.1 mg/kg. 
The dark green and brown lines are almost indistinguishable. The acronyms and initialisms designating the participants 
are defned in Ref. [60]. 
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Fig. 10. The DoEs listed in the fnal report fail to take into account the substantial, prevailing component of dark 
uncertainty, unduly penalizing BAM and NIST. The acronyms and initialisms designating the participants are defned in 
Ref. [60]. 

4.5 CCQM-K30.1 Lead in Wine 

The fnal report for CCQM-K30.1 [61] explains that only the results for the fve laboratories that used 
isotope dilution mass spectrometry (IDMS) as measurement method were used to calculate the KCRV and 
associated uncertainty. This left fve other results out of this calculation. The KCRV, 12.12 ng/g, was the 
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median of the fve selected measured values, and the associated standard uncertainty, 0.03 ng/g, was 
computed using the formula listed on the last line of page 7 of the fnal report. 

This formula is inappropriate because it applies only to data from a Gaussian distribution, and then only 
approximately when the number of participants is large, which is not the case here. The calculation of the 
expanded uncertainty portion of the DoEs also was done incorrectly, using the formula on page 8 of the fnal 
report, because it neglects the correlation between the KCRV and the measured values that were used to 
compute the KCRV. 

Table 5 lists the measurement results used for this illustration, which serves to show how a set of results 
where the measured values exhibit marked asymmetry may be reduced when there is no reason to set any of 
them aside. The measurement results were reordered so that those pertaining to the fve laboratories selected 
for calculation of the KCRV in the fnal report appear on the left-hand side of Figures 11 and 12. 

Table 5. CCQM-K30.1, Lead in Wine: measurement results, and coverage factors for 95 % coverage. The acronyms and 
initialisms listed under LAB are defned in Ref. [61]. 

LAB w / mg/kg u(w) / mg/kg U(w) / mg/kg k 

HSA 12.3 0.25 0.49 2 
NMIA 12.14 0.12 0.24 2.03 
LGC 12.12 0.155 0.31 2 
NMISA 12.08 0.16 0.32 2 
INMETRO 11.8 0.14 0.28 2 
CMQ 12.31 0.06 0.13 2 
INDECOPI 12.16 0.3 0.59 2 
UME 11.88 0.32 0.64 2 
EXHM 11.424 0.153 0.306 2 
IJS 10.45 0.13 0.26 2 

All 10 measurement results were selected for this exercise. The measurement results are mutually 
inconsistent as judged by Cochran’s Q (chi-squared) test, which yields a p-value smaller than 0.0001, and 
the dispersion of the measured values is about twice as large as the median of the reported standard 
uncertainties. The symmetry test suggested in Ref. [33] yields a p-value of 0.007, suggesting signifcant 
asymmetry. 

In these circumstances, the Decision Tree recommends the Hierarchical Skew Student + Gauss model 
described in Sec. 3.2.5. The corresponding estimate of the KCRV is 11.88 ng/g, with standard uncertainty 
of 0.17 ng/g. The dark uncertainty, τ , has a posterior mean of 0.5 ng/g and posterior standard deviation of 
0.2 ng/g. The DoEs, {D j ±U95%(D j)}, were computed as explained in Ref. [18, Sec. 6.2], and are depicted 
in Fig. 12. 

The asymmetry parameter, α , had posterior mean −4 and posterior standard deviation approximately 3, 
thus capturing the long left tail of the measured values apparent in Fig. 11. The number of degrees of 
freedom, ν , of the underlying skew-t distribution, had posterior mean of 11, posterior standard deviation of 
6, and posterior median of 9, approximately. 

22 https://doi.org/10.6028/jres.126.007 

Volume 126, Article No. 126007 (2021) https://doi.org/10.6028/jres.126.007  

Journal of Research of the National Institute of Standards and Technology 

https://doi.org/10.6028/jres.126.007


w
(P

b)
  

  (
ng

g)

10
.5

11
.0

11
.5

12
.0

12
.5 CCQM−K30.1 AdaptiveSkewStudent

HSA LGC INMETRO INDECOPI EXHM
NMIA NMISA CMQ UME IJS

Final Report
Adaptive Skew Student + Gauss

Fig. 11. CCQM-K30.1, Lead in Wine: measured values (red diamonds) of the mass fraction of lead and associated 
standard uncertainties, where the vertical, blue line segments represent the {w j ± u(w j)}; KCRV (horizontal, short, 
brown line) and associated standard uncertainty (khaki band) from the Final Report, determined by the measurement 
results from HSA, NMIA, LGC, NMISA, and INMETRO only; and KCRV recommended by the Decision Tree 
(horizontal, long, dark green line), 11.88 ng/g, with uncertainty band representing ±1 standard uncertainty, 0.17 ng/g, 
obtained using the measurement results from all 10 participants. The acronyms and initialisms designating the 
participants are defned in Ref. [61]. 
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4.6 Measurements of Radionuclides 

4.6.1 Equivalent Activity of 65Zn 

Table 6 lists the measurement results for the equivalent activity of 65Zn obtained in linked KCs 
BIPM.RI(II)-K1.Zn-65 and CCRI(II)-K2.Zn-65, using the SIR (International Reference System) at the 
BIPM (International Bureau of Weights and Measures, Sèvres, France) [62, Tables 4a+4b]. 

Table 6. Measurement results for the equivalent activity of 65Zn obtained in KCs BIPM.RI(II)-K1.Zn-65 +
CCRI(II)-K2.Zn-65, using the SIR (International Reference System) at the BIPM (International Bureau of Weights and 
Measures, Sèvres, France) [62, Tables 4a+4b], with the values measured by ASMW and BARC rounded as per the 
corresponding KCRV File (C. Michotte, personal communication, January 4, 2021). The results from the NMIs in 
boldface (BEV, ENEA, and SMU)) were not included in the calculation of the KCRV. The acronyms and initialisms 
listed under LAB are defned in Ref. [62]. 

LAB Ae(
65Zn) u(Ae(

65Zn)) LAB Ae(
65Zn) u(Ae(

65Zn))
/kBq /kBq 

ANSTO 29610 100 KRISS 29780 130 
ASMW 29480 130 LNE-LNHB 29810 130 

NIST 29840 190 LNMRI/IRD 30040 160 
BARC 29130 310 MKEH 29590 120 

BEV 29670 330 NMIJ 29700 150 
CMI-IIR 29850 170 NMISA 29870 110 

CNEA 30030 130 NPL 29990 110 
ENEA 29660 120 PTB 29710 130 

IFIN-HH 29550 150 SMU 29200 670 
IRA 29720 140 VNIIM 29727 87 

IRMM 29661 68 

The fnal report explains that “In May 2013 the CCRI(II) decided to no longer calculate the key 
comparison reference value (KCRV) by using an unweighted mean but rather by using the power-moderated 
weighted mean” [56]. Its authors suggest that this procedure “can be regarded as an upgrade of the 
well-established Mandel-Paule (M-P) mean” [63, 64]. 

Considering only the same results that the CCRI(II) chose to include in the calculation of the KCRV, the 
Decision Tree suggests the Hierarchical Gauss + Gauss model for these data. The KCRV produced by this 
model, 29742kBq ± 40kBq, obtained using the NIST Consensus Builder, is statistically indistinguishable 
from its counterpart listed in the fnal report, 29740kBq± 43kBq. The associated uncertainties, too, are 
almost identical (Fig. 13). 

However, there are notable differences between the DoEs corresponding to these two approaches: the 
expanded uncertainty components of the DoEs from the Hierarchical Gauss + Gauss model are appreciably 
larger than those from the power-moderated weighted mean, except for SMU, which is one of the NMIs 
whose result was not included in the calculation of the KCRV. These differences are particularly 
consequential for CNEA (Comisión Nacional de Energı́a Atómica, Argentina) and NPL (National Physical 
Laboratory, United Kingdom). 

The reason for this persistent difference is the fact that the NIST Consensus Builder heeds the advice in 
Ref. [18], to the effect that the {U95%(D j)} should be evaluated consistently with their primary goal of 
identifying participants with “unusual” results, in the sense that their measured values lie “beyond the range 
allowed by the model”, as suggested by Jones and Spiegelhalter [22]. 
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Fig. 13. BIPM.RI(II)-K1.Zn-65 + CCRI(II)-K2.Zn-65: measured values (small, solid, red diamonds) of the equivalent 
activity of 65Zn obtained using the SIR (International Reference System) at the BIPM (International Bureau of Weights 
and Measures, Sèvres, France), and associated, reported standard uncertainties, where the vertical, blue line segments 
represent the {Ae(

65Zn) ± u(Ae(
65Zn))}; KCRV (29740 kBq, horizontal, brown line) and associated standard 

uncertainty (43 kBq, khaki band) from the fnal report [62], determined by the measurement results from ANSTO, 
ASMW, NIST, BARC, CMI-IIR, CNEA, IFIN-HH, IRA, IRMM, KRISS, LNE-LNHB, LNMRI/IRD, MKEH, NMIJ, 
NMISA, NPL, PTB, and VNIIM only (Ref. [62] explains the meaning of these acronyms and initialisms); and 
corresponding, alternative KCRV recommended by the Decision Tree (29742 kBq, horizontal, dark green line), with 
uncertainty band representing ±1 standard uncertainty (40 kBq, pale green band) obtained using the measurement 
results from the same selected participants. The large, open, red diamonds indicate the three participants whose results 
the CCRI(II) chose to exclude from the computation of the KCRV because the standardization procedure used for them 
did not rely on a primary method. 

Determining whether participants have “unusual” results involves consideration of the estimate of dark 
uncertainty, τb = 96kBq, which in this case amounts to about 74 % of the median of the reported standard 
uncertainties. The differences between the uncertainties in the DoEs corresponding to the original treatment 
and to the Hierarchical Gauss + Gauss model depicted in Fig. 14, suggest that the power-moderated 
weighted mean may not be propagating dark uncertainty to the DoEs properly. 

A measurement result from P3KRBiN (Research Center for Radiation Safety and Nuclear Biomedics, 
Indonesia) obtained in 1993, 28540kBq ± 89kBq, had originally been considered for inclusion in the 
KCRV, but was later excluded because the power-moderated weighted mean suggested that it was an outlier 
(C. Michotte, personal communication, January 26, 2021). 

If this result is placed alongside those that contributed to the determination of the KCRV, then the 
Decision Tree recommends the Hierarchical Laplace + Gauss model, and in the process secures protection 
against the infuence of this markedly discrepant result, yielding a KCRV that is statistically 
indistinguishable from those listed above: 29719kBq± 56kBq. 
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Fig. 14. DoEs for selected participants in BIPM.RI(II)-K1.Zn-65 + CCRI(II)-K2.Zn-65. The diamonds represent the 
differences, {D j}, between measured values and the KCRV, and the vertical line segments represent {D j ±U95%(D j)}, 
in brown for the DoEs listed in the fnal report [62, Table 5], and in dark orange for the Hierarchical Gauss + Gauss 
model recommended by the Decision Tree. The fnal report does not report DoEs for ANSTO or ASMW because their 
measurement results were already more than 20 years old when the comparison was made (C. Michotte, personal 
communication, January 4, 2021). The DoE for NIST is based on the measurement result from 2001, while the result 
from 1999 was used in the calculation of the KCRV because it was the closest in time to the relevant calibration (C. 
Michotte, personal communication, January 4, 2021). Other than for SMU, the expanded uncertainties produced by the 
latter model are larger than those listed in the fnal report: these differences are particularly consequential for CNEA 
(Comisión Nacional de Energı́a Atómica, Argentina) and NPL (National Physical Laboratory, United Kingdom). The 
acronyms and initialisms designating the participants are defned in Ref. [62]. Those that appear in red indicate the 
participants whose measurement results were excluded from the computation of the KCRV. 

4.6.2 Half-Life of 90Sr 

Koepke et al. [18, Sec. 7.2] consider a set of measurement results for the half-life of 90Sr that 
MacMahon et al. [57] used to illustrate a procedure they propose to compute a consensus value in situations 
where there are “discrepant data” in the sense that the results are heterogeneous. 

The Decision Tree recommends the Hierarchical Skew Student + Gauss model for these data, which are 
listed in Table 7, because Cochran’s test yields a p-value less than 0.0001, both the Shapiro-Wilk and 
Anderson-Darling tests yield p-values less than 0.0003, and the symmetry test yields p-value of 0.02. 
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Table 7. Measured values of the half-life of 90Sr and associated standard measurement uncertainty, expressed in days, 
reported in Ref. [57]. The labels listed under STUDY correspond to the references in Ref. [57, Table 1]. 

STUDY T½(
90Sr)/d u(T½(

90Sr))/d 

WT55 10120 150 
An58 10700 580 
Fl65 10230 150 
Fl65 10410 330 
Ho77 10636 88 
La78 10282 12 
Ra83 10588 91 
Ko89 10665 37 
Ma94 10561 14 
WL96 10495 4 
Sc04 10557 11 

MacMahon et al. [57] conclude that the “best” estimate of the half-life of 90Sr, expressed in years, is 
10551 d (28.9 years), with standard uncertainty 14 d. Their counterparts based on the choice recommended 
by the Decision Tree are 10494 d (28.7 years) and 41 d respectively. Therefore, these two estimates of the 
half-life are not signifcantly different, yet the latter was produced using a general purpose, model-based 
procedure, while the former is the result of a tailor-made, ad hoc recipe. 

4.7 CCEM.RF-K25.W Thermistor Power Sensor Effciency 

The CCEM key comparison CCEM.RF-K25.W [65] involved the measurement of the effective 
effciency of two commercial, waveguide, temperature-compensated thermistor power sensors by several 
NMIs. The effective effciency, ηEFF, is the ratio of the substituted DC power to the total absorbed 
radio-frequency power. Table 8 lists the results of measurements made at 36 GHz using traveling standard 
PTB-1. 

Table 8. Measurement results for the PTB-1 power sensor, at 36 GHz, from CCEM.RF-K25.W [65, Table 5]. The fnal 
report excluded the measurement results from NIM and NRC from the calculation of the KCRV because they were 
deemed to be “statistical outliers.” The acronyms and initialisms listed under LAB are defned in Ref. [65]. 

LAB ηEFF u(ηEFF) 

KRISS 0.9143 0.0104 
LNE 0.9157 0.0018 

NIST 0.9184 0.0064 
NPL 0.9167 0.0060 
PTB 0.9153 0.0031 

VNIIFTRI 0.9160 0.0079 

NIM 0.8360 0.0072 
NRC 0.9375 0.0130 

The measurement results from NIM and from NRC were left out of the calculation of the KCRV 
because they were deemed to be “statistical outliers.” The estimate of the KCRV derived from the other six 
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results was 0.9161 with associated standard uncertainty of 0.0027. 
The Decision Tree examined all eight results and concluded that they were mutually inconsistent, and 

that the measured values appear to be a sample from a symmetric but non-Gaussian distribution: therefore, it 
recommended the Hierarchical Laplace + Gauss procedure. The resulting KCRV was 0.9156 with 
associated standard uncertainty of 0.0052. Since this estimate of ηEFF and the corresponding estimate from 
the fnal report are statistically indistinguishable, we conclude that the Decision Tree manages to reproduce 
the result in the KC’s fnal report while honoring principle (P1) of Sec. 2 (Fig. 15). 
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Fig. 15. Measurement results for the effective effciency of traveling standard PTB-1 from CCEM.RF-K25.W, at 
frequency 36 GHz. The fnal report excludes the results from NIM and NRC because they are “statistical outliers.” The 
Decision Tree recommends the Hierarchical Laplace + Gauss procedure for the full data set, which accommodates the 
results from NIM and NRC while protecting the KCRV from their infuence. The larger uncertainty associated with the 
alternative KCRV (represented by half the height of the pale green band) is attributable more to the model recognizing 
that the estimate of dark uncertainty is based on a small number of measurement results, than to the accommodation of 
the results from NIM and NRC. The acronyms and initialisms designating the participants are defned in Ref. [65]. 

5. Conclusions and Recommendations

The recommendations provided by the Decision Tree are driven by reasonable principles of metrological
practice and rest upon rigorous, proven methods of applied statistics that are widely used in felds where 
interlaboratory studies and meta-analyses are undertaken routinely. 

However, the statistical tests recommended for use at each node of the Decision Tree may not produce 
reliable results when the number of participants in the KC is very small (say, less than 5). In such cases, 
professional judgment or lessons learned from similar but larger data sets may be needed to navigate the 
Decision Tree confdently. 

An integrated implementation of the whole Decision Tree as a Shiny App (https://shiny.rstudio.com/) is 
under development. A future version of the Decision Tree may capitalize on the accumulated experience 
with KCs in a particular area (say, inorganic analysis), to develop meaningful prior information about the 
relative heterogeneity that is likely to be encountered, and then to take this historical information into 
account as an aid in deciding whether there is statistically signifcant heterogeneity. 

Reliance on the Decision Tree avoids the need, often felt by CCs and by other bodies that organize 
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interlaboratory studies, to set aside measurement results that do not seem to ft with the bulk of the others, 
but that cannot easily be dismissed on substantive grounds. The example in Sec. 4.7, on the effective 
effciency of a power sensor, illustrates this cogently. 

The Decision Tree also is able to cope with situations where the “standard” assumptions are not met (in 
particular, the assumptions of symmetry or Gaussian shape for the laboratory effects), and for which 
sub-optimal choices have been made: for example, computing the KCRV as the median of the measured 
values, ignoring the reported uncertainties and glossing over any dark uncertainty that may be present. 

The methods implemented in the leaves of the Decision Tree all properly account for correlations 
between the KCRV and individual measurement results, which are much too often neglected in Final 
Reports from KCs. This is facilitated by systematically using either the statistical bootstrap, or the results of 
Markov Chain Monte Carlo sampling [66] for uncertainty evaluations. These general purpose Monte Carlo 
methods are versatile statistical tools that address the challenges posed by such correlations, and that also 
effectively propagate evaluations of dark uncertainty, especially as they impact the DoEs. 

The expanded uncertainties in the DoEs presented in the foregoing often were considerably larger than 
their counterparts in the Final Reports. In some cases this was attributable to the inclusion of “discrepant” 
measurement results in the calculation of the KCRV, but the most persistent reason for the differences 
between DoEs in Final Reports and in the present, alternative treatments, is whether dark uncertainty was 
propagated to the DoEs, and how. 

In addition to evaluating and propagating dark uncertainty properly, the methods implemented in the 
leaves of the Decision Tree recognize and take into account the fact that the evaluation of the contributions 
of dark uncertainty is often based on a very small effective number of degrees of freedom (which equals the 
number of participants in the KC, minus 1). 

The effects that proper consideration of dark uncertainty has upon the DoEs are particularly clear in the 
examples of Sec. 4.4, Sec. 4.5, and Sec. 4.6.1, generally inducing a more guarded assessment of the 
signifcance of apparent differences between measured values and the KCRV. 

The examples in Sec. 4.6 concerning measurements of properties of radionuclides, show how the 
Decision Tree, while a general-purpose aid, can successfully address cases for which specialized solutions 
had been developed. 

The Decision Tree is a potentially useful guide for modeling and reducing the measurement results 
obtained in a KC, and it is likely to reduce the time and effort that typically have been expended in such 
tasks. We believe that it offers an approach that is much more defensible metrologically than several 
alternatives that have been employed historically, as reviewed in the examples in Sec. 4. 

However, the Decision Tree provides no guidance as to which measurement results to include and which 
to set aside when characterizing the KCRV: this is a substantive task and challenge that only the participants 
can and should address, relying on their expert knowledge. 

6. Appendix: Computer Codes for Hierarchical Skew Student + Gauss Model

This appendix provides detailed information about the Hierarchical Skew Student + Gauss model
introduced in Sec. 3.2.5, and lists R (Fig. 16) and Stan (Fig. 17) computer codes that implement this model, 
which may be used to reproduce the results from Sec. 4.5. 

The parameters of primary interest are the overall mean, µ in Eq. (1), the standard deviation that 
quantifes dark uncertainty, τ , and possibly the true values, {σ j}, of the reported uncertainties, when these 
are based on specifed, fnite numbers of degrees of freedom. These {σ j} are the standard deviations of the 
participant-specifc measurement errors, the {ε j} in Eq. (1). 

The model also includes two parameters of secondary interest: the skewness parameter, α , of the 
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probability distribution of the participants’ effects, which are the {λ j} in Eq. (1), and the number of degrees 
of freedom, ν , of the underlying Skew Student distribution. The parameter α controls the asymmetry of this 
distribution, and ν controls the heaviness of its tails. 

The interplay between ν and α is particularly delicate because a large value for ν combined with an α 
with small absolute value can produce results similar to those obtained using a small ν and an α with large 
absolute value. Scientifc judgment will be the best guide for how to balance the heaviness of the tails 
(controlled by ν) and the degree of asymmetry (controlled by α) that may reasonably be expected for the 
distribution of the participants’ effects. 

Since the Hierarchical Skew Student + Gauss model is a Bayesian model, it also comprises probability 
distributions for all the parameters that fgure in the model. These prior distributions include parameters of 
their own, called hyper-parameters, and the values of several of these need to be specifed in each instance 
of application. 

Five hyper-parameters require careful tuning, specifc to each dataset the model will be ftted to: (1) 
prior median of τ; (2) prior median for the {σ j}; (3) shape and (4) rate of the gamma prior distribution for 
ν ; and (5) prior standard deviation of α . The choices made in the R code of Fig. 16 are appropriate for the 
measurement results discussed in Sec. 4.5, but they may not be the best choices for other sets of 
measurement results. 

We recommend that, for general use, alphaPriorSD (in Line 12 of Fig.16) should be set equal to 4. 
The values assigned to nuPriorShape and to nuPriorRate in Line 12 of Fig.16, 3 and 0.25 respectively, 
may also prove to be adequate for general use: they suggest 12 as number of degrees of freedom expected a 
priori and hence moderately heavy tails for the skew-t distribution of the participants’ effects. 

Figure 17 lists a stand-alone implementation of the Hierarchical Skew Student + Gauss model 
formulated in the Stan [53] language. Figure 16 illustrates its application to the measurement results from 
CCQM-K30.1 in Table 5. The following explanations pertain to the numbered lines of Stan code in Fig. 17: 

Lines 33 and 40 The true value of the measurand, µ , is ξ + ωδ b√ν , where ξ is the location parameter of the
Skew√Student distribution, ω is its scale parameter, δ = α/ 1+ α2 [51, Eq. (2.6)], and � � �√ � 
bν = νΓ (ν − 1)/2 / πΓ(ν/2) [51, Eq. (4.15)]. The prior distribution selected for µ is a proper 
but non-informative Gaussian distribution, centered at 0, with very large standard deviation. 

√ 
Lines 35 and 42 τ = ω ν/(ν − 2) − (δ bν )

2 is the standard deviation of the participants’ effects, which 
are the {λ j} in Eq. (1). Its prior distribution is half-Cauchy [54] with median tauPriorMedian, 
which the R code of Fig. 16 sets equal to the median absolute deviation from the median of the 
measured values. 

Lines 36 and 50 The reported standard uncertainties are regarded as estimates of standard deviations {σ j}, 
based on fnite, but possibly large numbers of degrees of freedom, which are the entries of dfuw in 
Line 5 of the R code in Fig. 16. These numbers of degrees of freedom correspond to the coverage 
factors k listed in Table 5. 

Lines 37 and 43 The number of degrees of freedom, ν , has a gamma prior distribution truncated at 3, 
whose shape and rate parameters have values specifed in Line 12 of the R code in Fig. 16. The 
truncation at 3 ensures that the distribution of the participants’ effects, {λ j}, has a fnite, but otherwise 
unrestricted skewness coeffcient [51, p. 104]. 

Lines 38 and 44 The skewness parameter α has a Gaussian prior distribution centered at 0 with standard 
deviation specifed in Line 12 of the R code in Fig. 16. 

30 https://doi.org/10.6028/jres.126.007 

Volume 126, Article No. 126007 (2021) https://doi.org/10.6028/jres.126.007  

Journal of Research of the National Institute of Standards and Technology 

https://doi.org/10.6028/jres.126.007


Lines 47–49 The location parameter, ξ , of the Skew Student distribution does not appear explicitly in the 
Stan code, but its value is computed as part of the specifcation of the probability distribution of the 
true value, θ j = µ + λ j, measured by participant j, where λ j is the participant’s effect, for j = 1, . . . ,n. 

Line 51 Considering that each u2(x j) is part of the data, and that it is based on a fnite number of degrees of 
freedom, it is modeled as an outcome of a rescaled chi-squared random variable, consistently with the 
assumption that the participant-specifc measurement errors are Gaussian. 

Line 52 The measured values are modeled as outcomes of Gaussian random variables, conditionally upon 
the values of the {θ j} and of the {σ j}, which are estimated in the process. The estimates of the {σ j}
take into account the fact that the reported uncertainties are based on fnite (even if possibly very 
large) numbers of degrees of freedom. 

1 lab = c("HSA", "NMIA", "LGC", "NMISA", "INMETRO", "CMQ", "INDECOPI", 
2 "UME", "EXHM", "IJS") 
3 w = c(12.3, 12.14, 12.12, 12.08, 11.8, 12.31, 12.16, 11.88, 11.424, 10.45) 
4 uw = c(0.25, 0.12, 0.155, 0.16, 0.14, 0.06, 0.3, 0.32, 0.153, 0.13) 
5 dfuw = c(60.4, 35.1, 60.4, 60.4, 60.4, 60.4, 60.4, 60.4, 60.4, 60.4) 
6 

7 library(rstan) 
8 options(mc.cores = parallel::detectCores()) 
9 rstan_options(auto_write=TRUE) 

10 

11 CCQM_K30.1_data = list(n=length(w), x=w, u=uw, dfu=dfuw, 
12 alphaPriorSD=4, nuPriorShape=3, nuPriorRate=0.25, 
13 tauPriorMedian=mad(w), sigmaPriorMedian=median(uw)) 
14 

15 CCQM_K30.1_fit=stan(model_code=skewStudentGauss, 
16 data=CCQM_K30.1_data, 
17 warmup=50000, iter=150000, 
18 thin=25, chains=4, cores=4) 
19 

20 print(CCQM_K30.1_fit) 

Fig. 16. R code that applies the Hierarchical Skew Student + Gauss model as implemented in Fig. 17 to the example 
discussed in Sec. 4.5, using facilities available in R package rstan [55]. This R code assumes that the Stan code from 
Fig. 17 has been assigned to variable skewStudentGauss as a character string. The execution of this code on a Dell 
Optiplex 7020 computer with an Intel Core i7-4790 CPU with four cores running at 3.60 GHz, takes about 15 min. 
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1 functions { 
2 real skew_student_t_lpdf(real x, real nu, real xi, 
3 real omega, real alpha) { 
4 // nu = Number of degrees of freedom of Student's t 
5 // xi, omega, alpha = Location, Scale, and Skewness parameters 
6 real z; real zc; 
7 if (omega <= 0) reject(omega); 
8 z = (x-xi)/omega; zc = alpha*z*sqrt((nu+1)/(nu+square(z))); 
9 return log(2) - log(omega) + student_t_lpdf(z | nu, 0, 1) + 

10 student_t_lcdf(zc | nu+1, 0, 1); } 
11 

12 // Azzalini & Capitanio (2014, (2.6), (4.15)-(4.17)) 
13 real delta_fn (real alpha) {return alpha/sqrt(1+square(alpha));} 
14 real bnu_fn (real nu) {return sqrt(nu/pi()) * 
15 exp(lgamma((nu-1)/2) - lgamma(nu/2));} 
16 real omega_fn (real tau, real nu, real alpha) { 
17 return tau / sqrt(nu/(nu-2) -
18 square(bnu_fn(nu)*delta_fn(alpha))); } } 
19 

20 data { int n; // Number of participants 
21 vector[n] x; // Measured values 
22 vector[n] u; // Std. uncertainties associated with measured values 
23 vector[n] dfu; // Degrees of freedom of the {u[j]} 
24 real alphaPriorSD; // Prior SD for skewness parameter alpha 
25 real<lower=0> nuPriorShape; // Prior gamma shape for nu 
26 real<lower=0> nuPriorRate; // Prior gamma rate for nu 
27 real<lower=0> sigmaPriorMedian; // Prior median for the {sigma[j]} 
28 real<lower=0> tauPriorMedian; } // Prior median for tau 
29 

30 transformed data { vector[n] u2; 
31 for (j in 1:n) { u2[j] = u[j]^2; } } 
32 

33 parameters { real mu; // Measurand 
34 real theta[n]; // Means of measured values 
35 real<lower=0> tau; // Std. dev. of random effects 
36 real<lower=0> sigma[n]; // Std. deviations of measurement errors 
37 real<lower=3> nu; // Tail heaviness for random effects distribution 
38 real alpha; } // Skewness parameter of random effects distribution 
39 

40 model { mu ~ normal(0.0, 1.0e5); // Prior for measurand 
41 // Half Cauchy prior for standard deviation of participants' effects 
42 tau ~ cauchy(0, tauPriorMedian); 
43 nu ~ gamma(nuPriorShape, nuPriorRate); // Prior for Skew-t DF 
44 alpha ~ normal(0, alphaPriorSD); // Prior for skewness parameter 
45 // Half Cauchy priors for the {sigma[j]} 
46 for (j in 1:n) { // Azzalini & Capitanio (2014, (2.6), (4.15)-(4.17)) 
47 theta[j] ~ skew_student_t(nu, 
48 mu - omega_fn(tau, nu, alpha) * bnu_fn(nu) * delta_fn(alpha), 
49 omega_fn(tau, nu, alpha), alpha); 
50 sigma[j] ~ cauchy(0, sigmaPriorMedian); 
51 u2[j] ~ gamma(dfu[j]/2, dfu[j]/(2*(sigma[j]^2))); 
52 x[j] ~ normal(theta[j], sigma[j]); } } 

Fig. 17. Stan code implementing the Hierarchical Skew Student + Gauss model. 
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[59] Ivanović B, Milošević B, Obradović M (2020) symmetry: Testing for Symmetry of Data and Model Residuals. R package version 

0.2.1 Available at https://CRAN.R-project.org/package=symmetry 
[60] Hioki A et al (2012) Final report of the key comparison CCQM-K88: Determination of lead in lead-free solder containing silver 

and copper. Metrologia 50(1A):08002. https://doi.org/10.1088/0026-1394/50/1a/08002 
[61] Massif G (2013) Final report on CCQM-K30.1: Lead in wine. Metrologia 50(1A):08007. 

https://doi.org/10.1088/0026-1394/50/1a/08007 
[62] Michotte C, Ratel G, Courte S, Joseph L (2015) BIPM comparison BIPM.RI(II)-K1.Zn-65 of activity measurements of the 

radionuclide 65Zn for the BARC (india) with linked results for the CCRI(II)-K2.Zn-65 comparison. Metrologia 52(1A):06007. 
https://doi.org/10.1088/0026-1394/52/1a/06007 

[63] Mandel J, Paule R (1970) Interlaboratory evaluation of a material with unequal numbers of replicates. Analytical Chemistry 
42(11):1194–1197. https://doi.org/10.1021/ac60293a019 

[64] Mandel J, Paule R (1971) Correction — Interlaboratory evaluation of a material with unequal numbers of replicates. Analytical 
Chemistry 43(10):1287. https://doi.org/10.1021/ac60304a001 

[65] Judaschke R (2015) CCEM Key comparison CCEM.RF-K25.W. RF power from 33 GHz to 50 GHz in waveguide. fnal report of 
the pilot laboratory. Metrologia 52(1A):01001. https://doi.org/10.1088/0026-1394/52/1A/01001 

[66] Robert CP, Casella G (2004) Monte Carlo Statistical Methods (Springer, New York, NY), 2nd Ed. 

About the authors: Antonio Possolo is a NIST Fellow and the Chief Statistician for NIST, in the Statistical 
Engineering Division, Information Technology Laboratory, with a Ph.D. in statistics from Yale University, 
New Haven, CT. 

Amanda Koepke is a Mathematical Statistician in NIST’s Statistical Engineering Division, Information 
Technology Laboratory, with a Ph.D. in statistics from the University of Washington, Seattle, WA. 

David Newton is a Mathematical Statistician in NIST’s Statistical Engineering Division, Information 

35 https://doi.org/10.6028/jres.126.007 

Volume 126, Article No. 126007 (2021) https://doi.org/10.6028/jres.126.007  

Journal of Research of the National Institute of Standards and Technology 

https://doi.org/10.1002/sim.2514
https://doi.org/10.1186/1471-2288-14-103
https://doi.org/10.1002/sim.1186
https://CRAN.R-project.org/package=nortest
www.jstatsoft.org/v12/i06/
https://doi.org/10.1016/j.csda.2010.11.016
https://doi.org/10.1017/cbo9781139248891
http://mc-stan.org/
https://doi.org/10.1214/06-BA117A
http://mc-stan.org/
https://doi.org/10.1088/0026-1394/52/3/S200
https://doi.org/10.1016/j.apradiso.2003.11.028
https://doi.org/10.1088/0026-1394/57/1a/08013
https://CRAN.R-project.org/package=symmetry
https://doi.org/10.1088/0026-1394/50/1a/08002
https://doi.org/10.1088/0026-1394/50/1a/08007
https://doi.org/10.1088/0026-1394/52/1a/06007
https://doi.org/10.1021/ac60293a019
https://doi.org/10.1021/ac60304a001
https://doi.org/10.1088/0026-1394/52/1A/01001
https://doi.org/10.6028/jres.126.007


Technology Laboratory, with a Ph.D. in statistics from Purdue University, West Lafayette, IN, expected in 
2021. 

Michael R. Winchester is the Group Leader of the Inorganic Chemical Metrology Group in NIST’s 
Chemical Sciences Division, and Chair of the Inorganic Analysis Working Group of the Consultative 
Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM), with a Ph.D. in 
analytical chemistry from Clemson University, Clemson, SC. 

The National Institute of Standards and Technology is an agency of the U.S. Department of Commerce. 

36 https://doi.org/10.6028/jres.126.007 

Volume 126, Article No. 126007 (2021) https://doi.org/10.6028/jres.126.007  

Journal of Research of the National Institute of Standards and Technology 

https://doi.org/10.6028/jres.126.007

	Introduction
	Decision Tree and Guiding Principles
	Models and Methods
	Statistical Tests
	Mutual Consistency
	Symmetry
	Gaussian Shape

	Statistical Models and Data Reductions
	Adaptive Weighted Average
	Weighted Median
	Hierarchical Gauss + Gauss
	Hierarchical Laplace + Gauss
	Hierarchical Skew Student + Gauss


	Examples
	CCQM-K45 Tin in Tomato Paste
	CCQM-K145 Zinc in Bovine Liver
	CCQM-K145 Nickel in Bovine Liver
	CCQM-K88 Lead in Lead-Free Solder
	CCQM-K30.1 Lead in Wine
	Measurements of Radionuclides
	Equivalent Activity of 65Zn
	Half-Life of 90Sr

	CCEM.RF-K25.W Thermistor Power Sensor Efficiency

	Conclusions and Recommendations
	Appendix: Computer Codes for Hierarchical Skew Student + Gauss Model
	References



