
Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Exact Tile-Based Segmentation Inference
for Images Larger than GPU Memory

Michael Majurski and Peter Bajcsy

National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

michael.majurski@nist.gov
peter.bajcsy@nist.gov

We address the problem of performing exact (tiling-error free) out-of-core semantic segmentation inference of arbitrarily large images
using fully convolutional neural networks (FCN). FCN models have the property that once a model is trained, it can be applied on
arbitrarily sized images, although it is still constrained by the available GPU memory. This work is motivated by overcoming the GPU
memory size constraint without numerically impacting the final result. Our approach is to select a tile size that will fit into GPU
memory with a halo border of half the network receptive field. Next, stride across the image by that tile size without the halo. The input
tile halos will overlap, while the output tiles join exactly at the seams. Such an approach enables inference to be performed on whole
slide microscopy images, such as those generated by a slide scanner. The novelty of this work is in documenting the formulas for
determining tile size and stride and then validating them on U-Net and FC-DenseNet architectures. In addition, we quantify the errors
due to tiling configurations which do not satisfy the constraints, and we explore the use of architecture effective receptive fields to
estimate the tiling parameters.

Key words: artificial intelligence; convolutional neural networks; effective receptive field; out-of-core processing; semantic
segmentation.

Accepted: May 12, 2021

Published: June 3, 2021

https://doi.org/10.6028/jres.126.009

1. Introduction

The task of semantic segmentation, i.e., assigning a label to each image pixel, is often performed using
deep learning based convolutional neural networks (CNNs) [1, 2]. A subtype of CNN that only uses
convolutional layers is called a “fully convolutional neural network” (FCN), which can be used with input of
arbitrary size. Both U-Net 1[2] and the original FCN network [3] are examples of FCN type CNNs. FCNs
enable the network to be trained on images much smaller than those of interest at inference time as long as
the resolution is comparable. For example, one can train a U-Net model on (512×512) pixel tiles and then
perform graphics processing unit (GPU) based inference on arbitrarily sized images, provided the GPU
memory can accommodate the model coefficients, network activations, application code, and an input image
tile. This decoupling of the training and inference image sizes means that semantic segmentation models can
be applied to images that are much larger than the memory available on current GPUs.

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials
or equipment identified are necessarily the best available for the purpose.

1 How to cite this article:
Majurski M, Bajcsy P (2021) Exact Tile-Based Segmentation Inference for Images Larger than GPU Memory.

J Res Natl Inst Stan 126:126009. https://doi.org/10.6028/jres.126.009.

https://doi.org/10.6028/jres.126.009
michael.majurski@nist.gov
peter.bajcsy@nist.gov
https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Images larger than GPU memory can also be used to train the model if they are frst broken into tiles. In
fact, that is a fairly common practice when working with large-format images. Interestingly, the same edge
effects which cause tiling errors during inference also affects the training process. Therefore, the tiling
methodology presented here could also be used to generate tiles for network training.

The ability of FCN networks to perform inference on arbitrarily large images differs from other types of
CNNs where the training and inference image sizes must be identical. Usually, this static image size
requirement is not a problem since the input image size is expected to be static, or images can be resized
within reason to ft the network. For example, if one trained a CNN on ImageNet [4] to classify pictures into
two classes: {Cat, Dog}, then the content of the image does not change drastically if the cat photo is resized
to (224 × 224) pixels before inference, provided the resolution is not altered considerably. Convolutional
networks are not yet capable of strong generalization across scales [5, 6], so the inference time pixel
resolution needs to approximately match the training time resolution or accuracy can suffer.

In contrast, there are applications where resizing the image is not acceptable due to loss of information.
For example, in digital pathology, one cannot take a whole slide microscopy image generated by a slide
scanner (upwards of 10 gigapixels) and ft it into GPU memory; nor can one reasonably resize the image
because too much image detail would be lost.

Our work is motivated by the need to design a methodology for performing inference on arbitrarily large
images on GPU memory-constrained hardware in those applications where the loss of information due to
image resizing is not acceptable. This method can be summarized as follows. The image is broken down
into non-overlapping tiles. The local context of each tile is defned by the halo border (ghost region), which
is included only when performing inference. The tile size should be selected so that when the halo border is
included the whole image will ft into GPU memory. The network receptive feld [7] is the set of all input
pixels which can infuence a given output pixel. We use the receptive feld to defne the halo border as half
the network receptive feld to ensure that pixels on the edge of the non-overlapping tiles have all of the
required local context as if computed in a single forward pass.

There are three important concepts required for this tile-based (out-of-core) processing scheme.

1. Zone of Responsibility (ZoR): a rectangular region of the output image currently being computed,
a.k.a. the output tile size.

2. Halo: minimum horizontal and vertical border around the ZoR indicating the local context that the
FCN requires to accurately compute all pixels within the ZoR. This value is equal to half of the
receptive feld size of the model architecture being used. This is derived from the defnition of the
convolution network, each output pixel in the ZoR is dependent upon other pixels in either the ZoR or
in the halo.

3. Stride: the stride (in pixels) across the source image used to create tiles. The stride is fxed at the ZoR
size.

The original U-Net paper [2] briefy hinted at the feasibility of an inference scheme similar to the one
we present in this paper, but it did not fully quantify and explain the inference mechanism. The novelty of
our work lies in presenting a methodology for tiling-error-free inference over images that are larger than
available GPU memory for processed data.

2. Related Work

Out-of-core, tile-based processing is a common approach in the high performance computing (HPC)
feld where any local signal processing flter can be applied to carefully decomposed subregions of a larger

2 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

problem [8]. The goal is often computation acceleration via task or data parallelization. These tile-based
processes for the purpose of task parallelization also reduce the active working memory required at any
given point in the computation.

It has been known since the initial introduction of FCN models that they can be applied via
shift-and-stitch methods as if the FCN were a single flter [3, 9]. The original U-Net paper [2] also hinted at
inference performed on arbitrary sized images in its Figure 2. However, none of the past papers mentioning
shift-and-stitch discuss the methodology for performing out-of-core inference on arbitrarily sized images.

There are two common approaches for applying CNN models to large images: sliding window
(overlapping tiles) and patch-based. Sliding windows (i.e., overlapping tiles) have been used for object
detection [10, 11] and for semantic segmentation [12, 13]. Patch-based inference also supports arbitrarily
large images, but it can be very ineffcient [13, 14].

Huang et al. [15] and Iglovikov et al. [16] both proposed sliding window approaches. Huang et al. [15]
directly examined the problem of operating on images for which inference cannot be performed in a single
forward pass. The authors focused on different methods for reducing but not eliminating the error in
labeling that arises from different overlapping tile-based processing schemes. They examined label
averaging and the impacts of different tile sizes on the resulting output error and concluded that using as
large a tile as possible will minimize the error. Huang et al. [15] also examined the effects of zero-padding,
documenting the error it introduces. At no point did they produce tiling-error free inference. Iglovikov et al.
[16] remarked upon the error in the output logits at the tile edges during inference and suggested
overlapping predictions or cropping the output to reduce that error.

Patch based methods for dealing with large images predict a central patch given a larger local context.
Mnih [17] predicted a (16 × 16) pixel patch from a (64× 64) pixel area for road segmentation from aerial
images. This approach will scale to arbitrarily large images, and if a model architecture with a receptive
feld of less than 48 pixels is used, then it will have zero error from the tiling process. Saito et al. [18] used a
similar patch-based formulation to Mnih, predicting a center patch given a large local context; however, they
added a model averaging component by predicting eight slightly offset versions of the same patch and then
combining the predictions.

Our ability to perform error-free tile-based inference relies on the limited receptive feld of convolutional
layers. Luo et al. [19] discussed the receptive felds of convolutional architectures, highlighting the fact that
for a given output pixel, there is limited context/information from the input that can infuence that output [7].
Input data outside the receptive feld cannot infuence that output pixel [19]. The receptive feld of a model is
highly dependent upon architecture and layer connectivity. We use the theoretical underpinning of receptive
felds to identify the size of an image tile suffcient for performing inference without tiling-based errors.

To the best of our knowledge, no published method fully explores a methodology for performing
error-free tile-based (out-of-core) inference of arbitrarily large images. While tile-based processing schemes
have been outlined, the past publications do not provide a framework for achieving error-free tile-based
inference results. Our approach does not handle layers with dynamic inference or variable receptive felds
like stand-alone self-attention [20], squeeze and excitation layers [21], deformable convolutions [22], or
non-local layers [23].

3. Methods

Performing inference on arbitrarily large input images requires that we operate based on image tiles and
only on tiles small enough to ft in GPU memory for any single forward pass. To form a tile, the whole
image is broken down into non-overlapping regions. This is equivalent to striding across the image with a
fxed stride (in pixels). Then, if we include enough local context around each tile to cover the theoretical

3 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

receptive feld of the network, each pixel will have all of the local context it requires. Therefore, while the
full image is broken into tiles to perform inference, each pixel individually has all of the information
required to be predicted as if the whole image were passed through the network as one block of memory.
This work leverages FastImage [24], a high-performance accessor library for processing gigapixel images in
a tile-based manner. Figure 1 shows a cropped region from an example (20000× 20000) pixel stem cell
microscope image (left), as well as the segmentation result produced by the model applied to the full image
with a correct halo (center), and the segmentation result from tiling without the halo (right).

Fig. 1. (Left) A (250 × 250) pixel subregion of a grayscale stem cell colony image being segmented by U-Net. (Center)
Segmentation result with proper halo border of 96 pixels. (Right) Segmentation result with artifacts due to tiling (halo
border is equal to 0).

Each dimension of the square input tile is then defned as inputTileSize = ZoR + 2 × Halo. Figure 2
shows an example where a 832× 832 pixel ZoR is shown as a square with a 96 pixel halo surrounding the
ZoR. Since the local context provided by the pixels in the halo is required to correctly compute the output
tile, the GPU input is 832+(2 × 96) = 1024 pixels per spatial dimension.

Fig. 2. Left: ZoR A (832 pixel ×832 pixel square) with a 96 pixel surrounding halo (shaded area) which combine to
make the (1024 × 1024) pixel input tile required to infer the (832 × 832) pixel output tile (ZoR). Right: segmentation
output tile showing the ZoR contribution to the fnal segmented image.

4 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

In other words, the image is broken down into the non-overlapping ZoR (i.e., output tiles). For each
ZoR, the local context defned by the halo (where that context is available) is included in the input tile to be
passed through the network. For a specifc output pixel, if an input pixel is more than half the receptive feld
away, it cannot infuence that output pixel. Therefore, including a halo defned as half the receptive feld
ensures that pixels on the edge of the ZoR have all the required context.

After passing the input tile through the model, the ZoR within the prediction (without the halo) is copied
to the output image being constructed in central processing unit (CPU) memory. Note, the network output is
the same size as its input, ZoR +(2× Halo). The ZoR needs to be cropped out from the prediction so only
those pixels with full context are used to build the fnal result. The halo provides the network with all the
information it needs to make correct, exact predictions for the entirety of the output ZoR. We call this a
tiling-error free method because each ZoR is responsible for a specifc zone of the output image.

This tile-based inference can be thought of as a series of forward passes, each computing a subregion
(ZoR) of the feature maps that would be created while performing inference on the whole image in one pass.
In summary, each tile’s feature maps are created (forward pass), its ZoR output is extracted, and then the
GPU memory is recycled for the next tile. By building each ZoR result in a separate forward pass we can
construct the network output within a fxed GPU memory footprint for arbitrarily large images.

3.1 U-Net Case Study

Here we use U-Net [2] as a case study example of FCNs. Nonetheless, the presented tiling concept
applies to any FCN (without dynamic or variable receptive felds), just the specifc numerical values will be
different.

Note: for the purpose of brevity, we will use ‘up-conv’ (as the U-Net paper does) to refer to fractionally
strided convolutions with a stride of 1/2, which doubles the feature map spatial resolution [25].

3.1.1 Determining The Halo

The halo must be half the receptive feld (halo = dreceptive f ield/2e). The general principle is to sum
the values along the longest path through the network, the product of half the receptive feld for each
convolutional kernel, and the stride that kernel has across the input image. The stride a specifc convolution
kernel has across the input image is a combination of that kernel’s stride with respect to its feature map and
the downsampling factor between the input image size and the spatial size of that feature map. The
downsampling factor is determined by the number of spatial altering layers between the input image and a
specifc layer.

Let U-Net be described by an ordered sequence of convolutional layers c = 0, ...,N − 1 with each layer
being associated with a level lc and a square kernel kc × kc. For the network, N defnes the number of
convolutional layers along the longest path from input to output.

Let us defne the level lc of an encoder-decoder network architecture as the number of max-pool2 layers
minus the number of up-conv layers between the input image and the current convolutional layer c along the
longest path through the network. Levels start at 0; each max pool encountered along the longest path
increases the level by 1 and each up-conv reduces the level by 1.

3.1.2 General Halo Calculation

The required halo can be calculated according to Eq. 1 for a UNet-type FCN architecture. This equation
can be considered to be a special case of the more general framework presented by Araujo et al. [7] for

2Convolutions with a stride of 2 can also be used to halve the spatial size of the feature maps, but they will affect the receptive feld.

5 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

computing CNN receptive felds; however, it enables an exploration of how each UNet element contributes
to the receptive feld.

N−1 kcHalo = ∑ 2lc b c (1)
2c=0

The halo is a sum over every convolutional layer index c from 0 to N − 1 encountered along the longest
path from the input image to the output image. Equation 1 has two terms. The 2lc term is the number of
pixels at the input image resolution that correspond to a single pixel within a feature map at level lc.
Therefore, at level lc = 4, each pixel in the feature map equates to 24 = 16 pixels at the input image
resolution. This 2lc term is multiplied by the second term b k

2
c c which determines, for a given c, the number

of pixels of local context that are required at that feature map resolution to perform the convolution.

3.1.3 U-Net Confguration

We have made two modifcations to the published U-Net architecture.

1. Normalization: Batch normalization [26] was added after the activation function of each
convolutional layer because it is current good practice in the CNN modeling community.

2. Convolution Type: The convolutional padding scheme was changed to SAME from VALID as used in
the original paper [2].

Batch normalization will not prevent numerically identical results compared to performing inference on
the whole image in a single pass if correct inference procedures are followed, where the normalization
statistics are frozen, having been estimated during the training process.

The original U-Net paper used VALID type convolutions3 which shrink the spatial size of the feature
maps by 2 pixels for each layer [25]. Switching to SAME type convolutions preserves feature map size. See
Appendix D for additional explanation.

There is one additional constraint on U-Net that needs to be mentioned. Given the skip connections
between the encoder and decoder elements for matching feature maps, we need to ensure that the tensors
being concatenated together are the same size. This can be restated as requiring the input size to be divisible
by the largest stride across the input image by any kernel. For U-Net this stride is 16 pixels (derivation in
Appendix D). Another approach to ensuring consistent size between the encoder and decoder is to pad each
up-conv layer to make its output larger and then crop it to the target feature map size. That is a less elegant
solution than enforcing a tile size constraint and potentially padding the input image.

3.1.4 Halo Calculation for U-Net

The published U-Net (Figure 1 from [2]) has one level per horizontal stripe of layers. The input image
enters on level lc=0 = lc=1 = 0. The frst max-pool layer halves the spatial resolution of the network,
changing the level. Convolution layers c = {2,3} after that frst max-pool layer up to the next max-pool
layer belong to level lc=2 = lc=3 = 1. This continues through level 4, where the bottleneck of the U-Net
model occurs. In U-Net’s Figure 1 [2], the bottleneck is the feature map at the bottom which occurs right
before the frst up-conv layer. After the bottleneck, the level number decreases with each subsequent
up-conv layer, until level lN−1 = 0 right before the output image is generated.

3For an excellent review of convolutional arithmetic, including transposed convolutions (i.e., up-conv), see “A guide to convolutional
arithmetic for deep learning by Dumoulin and Visin” [25].

6 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

The halo computation in Eq. 1 can be simplifed for U-Net as shown in Appendix A. Appendix B shows
a numerical example for computing the halo size using Eq. 1.

Following Eq. 1 for U-Net results in a minimum required halo of 92 pixels in order to provide the
network with all of the local context it needs to predict the outputs correctly. This halo needs to be provided
both before and after each spatial dimension, and hence the input image to the network will need to be
2× 92 = 184 pixels larger. This value is exactly the number of pixels by which the original U-Net paper
shrunk the output to avoid using SAME convolutions; a 572 pixel input shrunk by 184 results in the 388 pixel
output [2]. However, this runs afoul of our additional restriction on the U-Net input size, which requires
images to be a multiple of 16. So rounding up to the nearest multiple of 16 results in a halo of 96 pixels.
Since one cannot simply adjust the ZoR size to ensure (ZoR+ Halo)%16 = 0 due to convolutional
arithmetic, we must explore constraints on image partitioning.

3.2 Constraints on Image Partitioning

Our tile-based processing methodology operates on the principle of constructing the intermediate feature
map representations within U-Net in a tile-based fashion, such that they are numerically identical to the
whole image being passed through the network in a single pass. Restated another way, the goal is to
construct an input image partitioning scheme such that the ZoR constructs a spatial subregion of the feature
maps that would exist if the whole image were passed through the network in a single pass.

3.2.1 Stride Selection

To properly construct this feature map subregion, the tiling cannot stride across the input image in a
different manner than would be used to perform inference on the whole image. The smallest feature map in
U-Net is spatially 16× smaller than the input image. Therefore, 16 pixels is the smallest offset one can have
between two tile-based forward network passes while having both collaboratively build subregions of a
single feature map representation. Figure 3 shows a simplifed one-dimensional example with a kernel of
size 3 performing addition. When two applications of the same kernel are offset by less than the size of the
kernel, they can produce different results. For U-Net, each (16× 16) pixel block in the input image becomes
a single pixel in the lowest spatial resolution feature map. A stride other than a multiple of 16 would result
in subtly different feature maps because each feature map pixel was constructed from a different set of
(16 × 16) input pixels.

This requirement means that the tiling of the full image always needs to start at the top-left corner and
stride across in a multiple of 16. However, this does not directly answer the question as to why we cannot
have a non-multiple of 16 halo value.

3.2.2 Border Padding

The limitation on the halo comes from the fact that if we have arbitrary halo values, we will need to use
different padding schemes between the full image inference and the tile-based inference to handle the image
edge effects. Figure 3 shows for a 1D case how refection padding can (1) alter the stride across the full
image, which needs to be maintained as a multiple of 16 to collaboratively build subregions of a single
feature map, and (2) change the refection padding required to have an input image for which the spatial
dimensions are a multiple of 16. Refection padding is preferred since it preserves image statistics locally.

7 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Fig. 3. (Left): Simplifed one-dimensional example of an addition kernel of size 3 being applied at an offset less than the
kernel size, producing different results (compare top and bottom sums of 1, 2, and 3 or 2, 3, and 4). (Right): Simplifed
1D example of refection padding (refected through dotted line), causing a different stride pattern across a set of pixels.
The altered stride prevents the tile-based processing from collaboratively building subregions of a single feature map.

3.2.3 ZoR and Halo Constraints

Both problems, (1) collaboratively building feature maps and (2) different full image edge refection
padding requirements disappear if both the ZoR and the halo are multiples of 16. Thus, we constrain the
fnal values of ZoR and halo to be the closest higher multiple of the ratio F between the image size I and
minimum feature map size (Eq. 2), where F = 16 for the published U-Net:

min{HI ,WI}F =
min∀lc {Hlc ,Wlc }

Halo (2)Halo∗ = Fd e
F

ZoR
ZoR = Fd e

F

where HI and WI are the input image height and width dimensions, respectively, Halo∗ is the adjusted halo
value to accommodate stride constraints, and Hlc and Wlc are the feature map height and width dimensions,
respectively.

4. Experimental Results

4.1 Data Set

We used a publicly accessible data set acquired in phase contrast imaging modality and published by
Bhadriraju et al. [27]. The data set consists of three collections, each with around 161 time-lapse images at
roughly (20000 × 20000) pixels per stitched image frame with 2 bytes per pixel.

4.2 Exact Tile-Based Inference Scheme

Whether performing inference on the whole image in a single forward pass or using tile-based
processing, the input image size needs to be a multiple of 16 as previously discussed. Refection padding is
applied to the input image to enforce this size constraint before the image is decomposed into tiles.

8 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Let us assume that we know how big an image we can ft into GPU memory, for example,
(1024 × 1024) pixels. Additionally, given that we are using U-Net, we know that the required halo is 96
pixels. In this case, the zone of responsibility is ZoR = 1024 − (2 × Halo) = 832 pixels per spatial
dimension. Despite performing inference on (1024× 1024) pixel tiles on the GPU per forward pass, the
stride across the input image is 832 pixels because we need non-overlapping ZoR. The edges of the full
image do not require halo context to ensure identical results when compared with a single inference pass.
Intuitively, the true context is unknown, since it is outside the existing image.

In the last row and column of tiles, there might not be enough pixels to fll out a full (1024× 1024) pixel
tile. However, because U-Net can alter its spatial size on demand, as long as the tile is a multiple of 16, a
narrower (last column) or shorter (last row) tile can be used.

4.3 Errors due to an Undersized Halo

To experimentally confrm that our out-of-core image inference methodology does not impact the results
we determined the largest image we could process on our GPU, performed the forward pass, and saved the
resulting softmax output values as ground truth data. We then processed the same image using our tiling
scheme with varying halo values. We show that there are numerical differences (greater than foating point
error) when using halo values less than 96.

Our U-Net model was trained to perform binary (foreground/background) segmentation of the phase
contrast microscopy images. The largest image on which we could perform inference given our GPU with
24GB of memory was (3584 × 3584) pixels. Therefore, we created 20 reference inference results by
cropping out K = 20 random (3584× 3584) subregions of the data set. Tile-based out-of-core inference was
performed for each of the 20 reference images using a tile size of 512 pixels (thereby meeting the multiple
of 16 constraint) with halo values from 0 to 96 pixels in 16 pixel increments.

The tiling codebase seamlessly constructs the output in CPU memory as if the whole image had been
inferred in a single forward pass. So our evaluation methodology consists of looking for differences in the
output softmax values produced by the reference forward pass (R) as well as the tile-based forward pass (T).

We used the following two metrics for evaluation: root mean squared error (RMSE) of the softmax
outputs as given in Eq. 3 and misclassifcation error (ME) of the resulting binary segmentation masks as
given in Eq. 4. We also included misclassifcation error rate (MER) as in Eq. 5 where the ME is normalized
by the number of pixels; and relative runtime, where the computation time required to perform inference is
shown relative to the runtime without the tiling scheme. This runtime highlights the tradeoff to be made
between the error introduced due to the out-of-core GPU inference and the computational overhead required
to do so. The MER metric can be multiplied by 100 to compute the percent of pixels with errors due to the
tiling scheme. All metrics were averaged across the K = 20 reference images. s

K ∑
m
i=1 ∑

n
j=1(Ri j − Ti j)21

RMSE = ∑ (3)
K mni=1 !

K m n1
ME = ∑∑∑ [Ri j =6 Ti j] (4)

K i=1 i=1 j=1 � �K ∑i
m
=1 ∑

n
j=1[Ri j =6 Ti j]1

MER = ∑ (5)
K nmi=1

The total inference error is a composite of model error (which is directly minimized by gradient descent
during training) and tiling error. We demonstrate a zero error contribution from tiling in the case of trained
and untrained U-Net models (or minimum and maximum inference errors due to a model).

9 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Table 1. Error Metrics for Tile Size = 512

TileSize ZoR Halo RMSE ME σ (ME) MER RelativeRuntime
3584 n/a n/a 0.0 0.0 0.0 0.0 1.0

512 512 0 1.11× 10−2 7773.4 1350 6.1× 10−4 1.08
512 480 16 6.35× 10−3 5455.4 1420 4.2× 10−4 1.31
512 448 32 3.29× 10−3 2372.2 670 1.8× 10−4 1.36
512 416 48 1.95× 10−3 1193.7 350 9.3× 10−5 1.61
512 384 64 7.79× 10−4 434.1 141 3.4× 10−5 1.85
512 352 80 1.50× 10−4 71.6 27 5.6× 10−6 2.21
512 320 96 4.17× 10−10 0.0 0.0 0.0 2.58

For the trained model, the error metrics are shown in Table 1 with 512 pixel tiles 4. Once the required 96
pixel halo is met, the RMSE falls into the range of foating point error, and the ME goes to zero. Beyond the
minimum required halo, all error metrics remain equivalent to the minimum halo. The frst row shows the
data for the whole image being inferred without the tiling scheme. The ME metric is especially informative,
because when it is zero, the output segmentation results are identical regardless of whether the whole image
was inferred in a single pass or it was decomposed into tiles. Table 1 highlights the engineering tradeoff that
must be made, where obtaining zero inference error requires 2.58× the wall clock runtime. The MER with
naive tailing is 6.1 × 10−4 or 0.06%. Depending on your application, this level of error might be acceptable
despite the potential for edge effects between the non-overlapping tiles. One consideration is that larger tile
sizes are more computationally effcient because the ratio of the ZoR area to the tile area increases.

For the untrained model, results are shown in Table 3 in Appendix C with 1024 pixel tiles. The results
were generated using an untrained 4 class U-Net model, in which weights were left randomly initialized.
Additionally, the image data for that result was normally distributed random noise with µ = 0,σ = 1. The
error coming from tile-based processing was zero once the required halo was met.

4.4 Errors due to Violation of Partitioning Constraints

To demonstrate how the inference results differ as a function of how the network strides across the input
image, we have constructed 32 overlapping (2048× 2048) pixel subregions of an image; each offset from
the previous subregion start by 1 pixel. So the frst subregion is [xst ,yst ,xend ,yend] = [0,0,2048,2048], while
the second subregion is [1,0,2049,2048], and so on. In order to compare the inference results without any
edge effects confounding the results, we only computed the RMSE (Eq. 3) of the softmax output within the
area in common between all 32 images, inset by 96 pixels; [128,96,1920, 1952]. The results are shown in
Figure 4, where identical softmax outputs only happen when the offset is a multiple of 16.

4All results were generated on an Intel Xeon 4114 CPU with an NVIDIA Titan RTX GPU using Python 3.6 and TensorFlow 2.1.0
running on Ubuntu 18.04.

10 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Fig. 4. Impact of the stride offset on the RMSE of the U-Net softmax output.

4.5 Application to a Fully Convolutional DenseNet

Up to this point, we have shown that our ZoR and halo tiling scheme produces error-free out-of-core
semantic segmentation inference for arbitrarily large images when using the published U-Net architecture
[2]. This section demonstrates the tiling scheme on a fully convolutional DenseNet confgured for semantic
segmentation [28]. DenseNets [29] replace stacked convolutional layers with densely connected blocks,
where each convolutional layer is connected to all previous convolutional layers in that block. Jegou et al.
[28] extended this original DenseNet idea to create a fully convolutional DenseNet based semantic
segmentation architecture.

While the architecture of DenseNets signifcantly differs from U-Net, the model is still fully
convolutional and thus our tiling scheme is applicable. Following Eq. 1 for a FC-DenseNet-56 [28] model
produces a required halo value of 377. This is signifcantly higher than U-Net due to the architecture depth.
FC-DenseNet-56 also has a ratio between the input image size and the smallest feature map of F = 32.
Therefore, the inference image sizes need to be a multiple of 32, not 16 like the original U-Net. Thus, the
computed 377 pixel halo is adjusted up to 384.

The error metrics for FC-DenseNet-56 as a function of halo are shown in Table 4 in Appendix C. This
numerical analysis relies on versions of the same 20 test images from the U-Net analysis, but they are
cropped to (2304× 2304), which was the largest image on which we were able to perform inference using
FC-DenseNet-56 on our 24GB GPU in a single forward pass.

4.6 Halo Approximation via Effective Receptive Field

The halo value required to achieve error free inference increases with the depth of the network. For
example, see Table 2 which shows the theoretical halo values (computed using Eq. 1) for a few common
semantic segmentation architectures. The deeper networks, like FC-DenseNet-103, require very large halo
values to guarantee error-free tile-based inference.

Using the empirical effective receptive feld estimation method outlined by Luo et al. [19], which
consists of setting the loss to 1 in the center of the image and then back propagating to the input image, we
can automatically estimate the required halo. This method produces an estimated halo of 96 pixels for our
trained U-Net [2], which is exactly the theoretical halo. This matches the data in Tables 1 and 3, where the
ME metric did not fall to zero until the theoretical halo was reached. On the other hand, according to Table 4
for FC-DenseNet-56, there is no beneft to using a halo larger than 192 despite the theoretical required halo
(receptive feld) being much larger. This is supported by the effective receptive feld estimated halo of 160

11 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

Table 2. Theoretical Radii for Common Segmentation Architectures

Architecture
U-Net [2]

SegNet [1]
FCN-VGG16 [3]

FC-DenseNet-56 [28]
FC-DenseNet-67 [28]

FC-DenseNet-103 [28]

Halo (pixels)
96

192
202
384
480

1120

pixels; which is just below the empirically discovered minimum halo of 192. Using the effective receptive
feld for estimating the required halo is not foolproof, but it provides a good proxy for automatically
reducing the tiling error. The effective receptive feld will always be less than or equal to the true network’s
potential receptive feld because convolution kernel weights can learn to ignore information, but they cannot
increase the kernel size.

5. Conclusions

This paper outlined a methodology for performing error-free segmentation inference for arbitrarily large
images. We documented the formulas for determining the tile-based inference scheme parameters. We then
demonstrated that the inference results are identical regardless of whether or not tiling was used. These
inference scheme parameters were related back to the theoretical and effective receptive felds of deep
convolutional networks as previously studied in literature [19]. The empirical effective receptive feld
estimation methods of Luo et al. [19] were used to provide a rough estimate of the inference tiling scheme
parameters without requiring any knowledge of the architecture. While we used U-Net and FC-DenseNets
as example FCN models, these principles apply to any FCN model while being robust across different
choices of tile size.

In this work we did not consider any FCN networks with dilated convolutions, which are known to
increase the receptive feld side of the network. We will include this extension in future work as well as
tradeoff evaluations of the relationships among relative runtime, GPU memory size, and maximum tile size.

6. Test Data and Source Code

The test data and the Tensorfow v2.x source code are available from public URLs5. While the available
codebase in theory supports arbitrarily large images, we made the choice at implementation time to load the
whole image into memory before processing it through the network. In practice, this means the codebase is
limited to performing inference on images that ft into CPU memory. However, a fle format that supports
reading sub-sections of the whole image would support inference of disk-backed images which do not ft
into CPU memory.

5https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency
https://github.com/usnistgov/semantic-segmentation-unet/tree/ooc-inference.

12 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://isg.nist.gov/deepzoomweb/data/stemcellpluripotency
https://github.com/usnistgov/semantic-segmentation-unet/tree/ooc-inference
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

A. Appendix A: Derivation of the Simplifed Halo Formula

Let us assume that in the entire U-Net architecture the kernel size is constant kc = k = const and each
level has the same number of convolutional layers on both decoder and encoder sides nl = n = const. If
these constraints are satisfed, then the general formula for determining the halo can be simplifed as follows:

N kc2lc b∑Halo = c
2c=1

Nk
2lc∑= b c×

2 c=1
M−1k (6)

(2m × n)+ 2M × n)∑c× (2 ×= b
2 m=0

k 1× (1 − 2M)
= b c× n× (2×)+ 2M)

2 1− 2

= b k c× n × (3 × 2M − 2)
2

where M is the maximum U-Net level M = max∀c{lc} .
For U-Net architecture, the parameters are k = 3, n = 2 and M = 4, and the equation yields Halo = 92.
For DenseNet architecture, the parameters are k = 3, n = 4 and M = 5, and the equation yields

Halo = 376. This value differs by one from the value computed according to Eq. 6 because the DenseNet
has asymmetry between the frst encoder layer with a kernel size k = 3 and the last decoder layer with a
kernel size k = 1.

B. Appendix B: Example U-Net Halo Calculation

Following Eq. 1 for U-Net results in a required halo of 92 pixels in order to provide the network with all
of the local context it needs to predict the outputs correctly. With k = 3, b k

2
c c reduces to b 2

3 c = 1. The halo
computation for U-Net thus reduces to a sum of 2lc terms for each convolutional layer encountered along the
longest path from input to output as shown in Eq. 7.

17
Halo = ∑ 2lc (7)

c=0

By substituting the level numbers for each convolutional layer from 0 to 17 as shown in Eq. 8, one
obtains the minimum halo value of 92 pixels.

lc = {0, 0,1,1, 2,2,3,3,4,4,3,3, 2,2,1, 1,0,0}
(8)

92 = 20 + 20 + 21 + 21 + 22 + 22 + 23 + ...

Similarly, according to Eq. 6, the calculation simplifes to:

M = max lc = 4
∀c

kc = k = 1 (9)
nl = n = 2

92 = 1 × 2 × (3× 24 − 2)

13 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

C. Appendix C: Error Metrics

Table 3. UnTrained U-Net Error Metrics for Tile Size = 1024

TileSize ZoR Halo RMSE ME NME RelativeRuntime
3584 n/a n/a 0.0 0.0 0.0 1.0
1024 1024 0 2.36× 10−4 21856.9 1.7× 10−3 1.08
1024 992 16 1.05× 10−6 234.8 1.8× 10−5 1.23
1024 960 32 1.92× 10−7 49.7 3.9× 10−6 1.30
1024 928 48 5.47× 10−8 13.2 1.0× 10−6 1.35
1024 896 64 1.44× 10−8 2.8 2.1× 10−7 1.31
1024 864 80 5.87× 10−9 1.4 1.1× 10−7 1.5
1024 832 96 3.54 × 10−10 0.0 0.0 1.58

Table 4. Error Metrics for FC-DenseNet Tile Size = 1152

TileSize ZoR Halo RMSE ME NME RelativeRuntime
2304 n/a n/a 0.0 0.0 0.0 1.0
1152 1152 0 5.40 × 10−3 821.5 1.5 × 10−4 1.15
1152 1088 32 1.81 × 10−3 376.1 7.1 × 10−5 1.42
1152 1024 64 9.16 × 10−4 168.0 3.2 × 10−5 1.54
1152 960 96 3.36 × 10−4 51.6 9.7 × 10−6 1.59
1152 896 128 5.63 × 10−5 5.3 1.0 × 10−6 1.67
1152 832 160 4.97 × 10−6 0.2 4.7 × 10−8 1.76
1152 768 192 2.44 × 10−7 0.0 0.0 2.32
1152 704 224 1.92 × 10−8 0.0 0.0 2.22
1152 640 256 1.37 × 10−8 0.0 0.0 2.33
1152 576 288 1.44 × 10−8 0.0 0.0 2.39
1152 512 320 1.37 × 10−8 0.0 0.0 2.52
1152 448 352 1.45 × 10−8 0.0 0.0 4.65
1152 384 384 1.37 × 10−8 0.0 0.0 5.89

D. Appendix D: Convolution Padding

The original U-Net paper used VALID type convolutions which shrink the spatial size of the feature
maps by 2 pixels for each layer [25]. Figure 2.1 from Dumoulin and Visin [25] shows an illustration
showing why VALID causes the feature maps to shrink. The effect of VALID convolutions can also be seen in
the frst layer of the original U-Net, where the input image size of (572 × 572) pixels shrinks to (570 × 570)
pixels [2]. SAME type convolutions requires zero padding to be applied to each feature map within each
convolutional layer ensure the output has the same spatial size as the input. Figure 2.3 from [25] shows an
illustration where a input (5× 5) remains (5 × 5) pixels after the convolution is applied. While VALID type
convolutions avoid the negative effects of the zero padding within SAME type convolutions, which can affect
the results as outlined by Huang et al. [15], it is conceptually simpler to have input and output images of the
same size. Additionally, our tiling scheme overcomes all negative effects that zero padding can introduce,
justifying the choice of SAME type convolutions.

14 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

The change to SAME type convolutions introduces an additional constraint on U-Net that needs to be
mentioned. Given the skip connections between the encoder and decoder elements for matching feature
maps, we need to ensure that the tensors being concatenated together are the same size. This can be restated
as requiring the input size to be divisible by the largest stride across the input image by any kernel. Another
approach to ensuring consistent size between the encoder and decoder is to pad each up-conv layer to make
its output larger and then crop to the target feature map size. We feel that is a less elegant solution than
enforcing a tile size constraint and potentially padding the input image.

The feature map at the bottleneck of U-Net is spatially 16× smaller than the input image. Therefore, the
input to U-Net needs to be divisible by 16. As we go deeper into a network we trade spatial resolution for
feature depth. Given a (512× 512) pixel input image, the bottleneck shape will be N × 1024 × 32× 32
(assuming NCHW6 dimension ordering with unknown batch size). Thus the input image height divided by the
bottleneck feature map height is 512 = 16. However, if the input image is (500× 500) pixels, the bottleneck 32
would be (in theory) N × 1024 × 31.25× 31.25. When there are not enough input pixels in a feature map to
perform the 2× 2 max pooling, the output feature map size is the foor of the input size divided by 2. Thus,
for an input image of (500 × 500) pixels the feature map heights after each max pooling layer in the encoder
are: [500, 250,125,62,31]. Now following the up-conv layers through the decoder, each of which doubles
the spatial resolution, we end up with the following feature map heights: [31,62,124,248,496]. This results
in a different feature map spatial size at the third level; encoder 125, decoder 124. If the input image size is a
multiple of 16, then this mismatch cannot happen.

Acknowledgments

Analysis performed (in part) on the NIST Enki HPC cluster. Contribution of U.S. government not
subject to copyright.

7. References

[1] Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(12):2481–2495.

[2] Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. International
conference on medical image computing and computer-assisted intervention (Springer), pp 234–241.

[3] Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proceedings of the IEEE
conference on computer vision and pattern recognition, pp 3431–3440.

[4] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. (2015) Imagenet
large scale visual recognition challenge. International Journal of Computer Vision 115(3):211–252.

[5] Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial transformer networks. Advances in Neural Information
Processing Systems 28:2017–2025.

[6] Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 2117–2125.

[7] Araujo A, Norris W, Sim J (2019) Computing receptive fields of convolutional neural networks. Distill 4(11):e21.
[8] Blattner T, Keyrouz W, Bhattacharyya SS, Halem M, Brady M (2017) A hybrid task graph scheduler for high performance image

processing workflows. Journal of Signal Processing Systems 89(3):457–467.
[9] Sherrah J (2016) Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint

arXiv:160602585.
[10] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) Overfeat: Integrated recognition, localization and

detection using convolutional networks. 2nd International Conference on Learning Representations, ICLR 2014, p 149797.
[11] Van Etten A (2019) Satellite imagery multiscale rapid detection with windowed networks. Winter conference on applications of

computer vision (IEEE), pp 735–743.
[12] Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng PA (2019) Fast scannet: fast and dense analysis of multi-gigapixel

whole-slide images for cancer metastasis detection. IEEE Transactions on Medical Imaging 38(8):1948–1958.

6NCHW Tensor dimension ordering: N (batch size), Channels, Height, Width

15 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://doi.org/10.6028/jres.126.009

Volume 126, Article No. 126009 (2021) https://doi.org/10.6028/jres.126.009

Journal of Research of National Institute of Standards and Technology

[13] Volpi M, Tuia D (2016) Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE
Transactions on Geoscience and Remote Sensing 55(2):881–893.

[14] Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2016) Fully convolutional neural networks for remote sensing image
classification. International geoscience and remote sensing symposium (IGARSS) (IEEE), pp 5071–5074.

[15] Huang B, Reichman D, Collins LM, Bradbury K, Malof JM (2018) Tiling and stitching segmentation output for remote sensing:
Basic challenges and recommendations. arXiv preprint arXiv:180512219.

[16] Iglovikov V, Mushinskiy S, Osin V (2017) Satellite imagery feature detection using deep convolutional neural network: A kaggle
competition. arXiv preprint arXiv:170606169.

[17] Mnih V (2013) Machine learning for aerial image labeling (University of Toronto (Canada)).
[18] Saito S, Yamashita T, Aoki Y (2016) Multiple object extraction from aerial imagery with convolutional neural networks.

Electronic Imaging 2016(10):1–9.
[19] Luo W, Li Y, Urtasun R, Zemel R (2016) Understanding the effective receptive field in deep convolutional neural networks.

Advances in Neural Information Processing Systems 29:4905–4913.
[20] Ramachandran P, Parmar N, Vaswani A, Bello I, Levskaya A, Shlens J (2019) Stand-alone self-attention in vision models. Neural

Information Processing Systems.
[21] Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and

pattern recognition, pp 7132–7141.
[22] Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y (2017) Deformable convolutional networks. Proceedings of the IEEE

international conference on computer vision, pp 764–773.
[23] Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. Proceedings of the IEEE conference on computer vision

and pattern recognition, pp 7794–7803.
[24] Bardakoff A (2019) Fast image (fi) : A high-performance accessor for processing gigapixel images. Available at

https://github.com/usnistgov/FastImage
[25] Dumoulin V, Visin F (2016) A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:160307285 .
[26] Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift.

International conference on machine learning (PMLR), pp 448–456.
[27] Bhadriraju K, Halter M, Amelot J, Bajcsy P, Chalfoun J, Vandecreme A, Mallon BS, Park Ky, Sista S, Elliott JT, et al. (2016)

Large-scale time-lapse microscopy of oct4 expression in human embryonic stem cell colonies. Stem Cell Research 17(1):122–129.
[28] Jégou S, Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: Fully convolutional densenets

for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 11–19.
[29] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Proceedings of the IEEE

conference on computer vision and pattern recognition, pp 4700–4708.

About the authors: Michael Majurski is a computer scientist in the Information Systems Group of the
Software and Systems Division of the Information Technology Laboratory at NIST. His primary feld of
research is computer vision, specifcally, the processing and analysis of scientifc images using traditional
computer vision, machine learning, and deep learning based methods. Building CNNs from small
domain-specifc datasets is a particular specialty.

Dr. Peter Bajcsy has been a member of the Information Systems Group in the Information Technology
Laboratory at NIST since 2011. Peter has been leading a project focusing on the application of
computational science in biological metrology. Peter’s area of research is large-scale image-based analyses
using machine learning, computer vision, and pattern recognition techniques.

The National Institute of Standards and Technology is an agency of the U.S. Department of Commerce.

16 https://doi.org/10.6028/jres.126.009

https://doi.org/10.6028/jres.126.009
https://github.com/usnistgov/FastImage
https://doi.org/10.6028/jres.126.009

	Introduction
	Related Work
	Methods
	U-Net Case Study
	Determining The Halo
	General Halo Calculation
	U-Net Configuration
	Halo Calculation for U-Net

	Constraints on Image Partitioning
	Stride Selection
	Border Padding
	ZoR and Halo Constraints

	Experimental Results
	Data Set
	Exact Tile-Based Inference Scheme
	Errors due to an Undersized Halo
	Errors due to Violation of Partitioning Constraints
	Application to a Fully Convolutional DenseNet
	Halo Approximation via Effective Receptive Field

	Conclusions
	Test Data and Source Code
	Appendix A: Derivation of the Simplified Halo Formula
	Appendix B: Example U-Net Halo Calculation
	Appendix C: Error Metrics
	Appendix D: Convolution Padding
	References

